Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nucleic Acids Res ; 48(22): 12833-12844, 2020 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-33275131

RESUMEN

RNA modifications are a well-recognized way of gene expression regulation at the post-transcriptional level. Despite the importance of this level of regulation, current knowledge on modulation of tRNA modification status in response to stress conditions is far from being complete. While it is widely accepted that tRNA modifications are rather dynamic, such variations are mostly assessed in terms of total tRNA, with only a few instances where changes could be traced to single isoacceptor species. Using Escherichia coli as a model system, we explored stress-induced modulation of 2'-O-methylations in tRNAs by RiboMethSeq. This analysis and orthogonal analytical measurements by LC-MS show substantial, but not uniform, increase of the Gm18 level in selected tRNAs under mild bacteriostatic antibiotic stress, while other Nm modifications remain relatively constant. The absence of Gm18 modification in tRNAs leads to moderate alterations in E. coli mRNA transcriptome, but does not affect polysomal association of mRNAs. Interestingly, the subset of motility/chemiotaxis genes is significantly overexpressed in ΔTrmH mutant, this corroborates with increased swarming motility of the mutant strain. The stress-induced increase of tRNA Gm18 level, in turn, reduced immunostimulation properties of bacterial tRNAs, which is concordant with the previous observation that Gm18 is a suppressor of Toll-like receptor 7 (TLR7)-mediated interferon release. This documents an effect of stress induced modulation of tRNA modification that acts outside protein translation.


Asunto(s)
Inmunidad Innata/genética , Procesamiento Postranscripcional del ARN/genética , ARN de Transferencia/genética , Receptor Toll-Like 7/genética , Escherichia coli/genética , Regulación de la Expresión Génica/genética , Guanosina/genética , Guanosina/inmunología , Humanos , Interferones/genética , Interferones/inmunología , Metilación , Procesamiento Postranscripcional del ARN/inmunología , ARN de Transferencia/inmunología , Receptor Toll-Like 7/inmunología
2.
Cells ; 9(5)2020 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-32429458

RESUMEN

NIMA (never-in-mitosis gene A)-related kinase 1 (Nek1) is shown to impact on different cellular pathways such as DNA repair, checkpoint activation, and apoptosis. Its role as a molecular target for radiation sensitization of malignant cells, however, remains elusive. Stably transduced doxycycline (Dox)-inducible Nek1 shRNA HeLa cervix and siRNA-transfected HCT-15 colorectal carcinoma cells were irradiated in vitro and 3D clonogenic radiation survival, residual DNA damage, cell cycle distribution, and apoptosis were analyzed. Nek1 knockdown (KD) sensitized both cell lines to ionizing radiation following a single dose irradiation and more pronounced in combination with a 6 h fractionation (3 × 2 Gy) regime. For preclinical analyses we focused on cervical cancer. Nek1 shRNA HeLa cells were grafted into NOD/SCID/IL-2Rγc-/- (NSG) mice and Nek1 KD was induced by Dox-infused drinking water resulting in a significant cytostatic effect if combined with a 6 h fractionation (3 x 2 Gy) regime. In addition, we correlated Nek1 expression in biopsies of patients with cervical cancer with histopathological parameters and clinical follow-up. Our results indicate that elevated levels of Nek1 were associated with an increased rate of local or distant failure, as well as with impaired cancer-specific and overall survival in univariate analyses and for most endpoints in multivariable analyses. Finally, findings from The Cancer Genome Atlas (TCGA) validation cohort confirmed a significant association of high Nek1 expression with a reduced disease-free survival. In conclusion, we consider Nek1 to represent a novel biomarker and potential therapeutic target for drug development in the context of optimized fractionation intervals.


Asunto(s)
Fraccionamiento Celular/métodos , Terapia Molecular Dirigida , Quinasa 1 Relacionada con NIMA/metabolismo , Tolerancia a Radiación , Animales , Supervivencia Celular , Células Clonales , Células HeLa , Histonas/metabolismo , Humanos , Ratones Endogámicos NOD , Ratones SCID , Análisis Multivariante , Pronóstico , Resultado del Tratamiento
3.
RNA ; 25(7): 869-880, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31019095

RESUMEN

Bacterial RNA has emerged as an important activator of innate immune responses by stimulating Toll-like receptors TLR7 and TLR8 in humans. Guanosine 2'-O-methylation at position 18 (Gm18) in bacterial tRNA was shown to antagonize tRNA-induced TLR7/8 activation, suggesting a potential role of Gm18 as an immune escape mechanism. This modification also occurs in eukaryotic tRNA, yet a physiological immune function remained to be tested. We therefore set out to investigate the immune modulatory role of Gm18 in both prokaryotic and eukaryotic microorganisms, Escherichia coli and Saccharomyces cerevisiae, and in human cells. Using RiboMethSeq analysis we show that mutation of trmH in E. coli, trm3 in S. cereviase, and CRISPR/Cas9-induced knockout of TARBP1 in H. sapiens results in loss of Gm18 within tRNA. Lack of Gm18 across the kingdoms resulted in increased immunostimulation of peripheral blood mononuclear cells when activated by tRNA preparations. In E. coli, lack of 2'-O-methyltransferase trmH also enhanced immune stimulatory properties by whole cellular RNA. In contrast, lack of Gm18 in yeasts and human cells did not affect immunostimulation by whole RNA preparations. When using live E. coli bacteria, lack of trmH did not affect overall immune stimulation although we detected a defined TLR8/RNA-dependent gene expression signature upon E. coli infection. Together, these results demonstrate that Gm18 is a global immune inhibitory tRNA modification across the kingdoms and contributes to tRNA recognition by innate immune cells, but as an individual modification has insufficient potency to modulate recognition of the investigated microorganisms.


Asunto(s)
Endosomas/metabolismo , Células Eucariotas/inmunología , Guanosina/química , Inmunidad Innata/inmunología , Células Procariotas/inmunología , ARN de Transferencia/metabolismo , Receptores Toll-Like/metabolismo , Células Eucariotas/metabolismo , Humanos , Metilación , Células Procariotas/metabolismo , ARN de Transferencia/genética , Receptores Toll-Like/genética , ARNt Metiltransferasas/genética , ARNt Metiltransferasas/metabolismo
4.
Front Immunol ; 10: 198, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30846984

RESUMEN

Streptococcus pyogenes is a major human pathogen causing a variety of diseases ranging from common pharyngitis to life-threatening soft tissue infections and sepsis. Microbial nucleic acids, especially bacterial RNA, have recently been recognized as a major group of pathogen-associated molecular patterns (PAMPs) involved in the detection of Streptococcus pyogenes via endosomal Toll-like receptors (TLRs) in vitro. However, the individual contribution and cooperation between TLRs as well as cell-type and strain specific differences in dependency on nucleic acid detection during S. pyogenes infection in vitro have not been clarified in detail. Moreover, the role of particularly bacterial RNA for the defense of S. pyogenes infection in vivo remains poorly defined. In this study, we report that in all investigated innate immune cells involved in the resolution of bacterial infections, including murine macrophages, dendritic cells and neutrophils, recognition of S. pyogenes strain ATCC12344 is almost completely dependent on nucleic acid sensing via endosomal TLRs at lower MOIs, whereas at higher MOIs, detection via TLR2 plays an additional, yet redundant role. We further demonstrate that different S. pyogenes strains display a considerable inter-strain variability with respect to their nucleic acid dependent recognition. Moreover, TLR13-dependent recognition of S. pyogenes RNA is largely non-redundant in bone marrow-derived macrophages (BMDMs), but less relevant in neutrophils and bone marrow-derived myeloid dendritic cells (BMDCs) for the induction of an innate immune response in vitro. In vivo, we show that a loss of nucleic acid sensing blunts early recognition of S. pyogenes, leading to a reduced local containment of the bacterial infection with subsequent pronounced systemic inflammation at later time points. Thus, our results argue for a crucial role of nucleic acid sensing via endosomal TLRs in defense of S. pyogenes infection both in vitro and in vivo.


Asunto(s)
Endosomas/metabolismo , Interacciones Huésped-Patógeno/inmunología , Infecciones Estreptocócicas/inmunología , Infecciones Estreptocócicas/metabolismo , Streptococcus pyogenes/fisiología , Receptores Toll-Like/metabolismo , Biomarcadores , Citocinas/metabolismo , Humanos , Inmunidad Celular , Inmunidad Innata , Óxido Nítrico/metabolismo , Ácidos Nucleicos/inmunología , ARN Bacteriano/inmunología , Especies Reactivas de Oxígeno/metabolismo , Infecciones Estreptocócicas/microbiología
5.
Genes (Basel) ; 10(2)2019 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-30699960

RESUMEN

Self/foreign discrimination by the innate immune system depends on receptors that identify molecular patterns as associated to pathogens. Among others, this group includes endosomal Toll-like receptors, among which Toll-like receptors (TLR) 3, 7, 8, and 13 recognize and discriminate mammalian from microbial, potentially pathogen-associated, RNA. One of the discriminatory principles is the recognition of endogenous RNA modifications. Previous work has identified a couple of RNA modifications that impede activation of TLR signaling when incorporated in synthetic RNA molecules. Of note, work that is more recent has now shown that RNA modifications in their naturally occurring context can have immune-modulatory functions: Gm, a naturally occurring ribose-methylation within tRNA resulted in a lack of TLR7 stimulation and within a defined sequence context acted as antagonist. Additional RNA modifications with immune-modulatory functions have now been identified and recent work also indicates that RNA modifications within the context of whole prokaryotic or eukaryotic cells are indeed used for immune-modulation. This review will discuss new findings and developments in the field of immune-modulatory RNA modifications.


Asunto(s)
Inmunidad Innata/genética , Procesamiento Postranscripcional del ARN , Receptores Toll-Like/metabolismo , Animales , Humanos
6.
Nucleic Acids Res ; 46(18): 9764-9775, 2018 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-30102387

RESUMEN

Sensing of nucleic acids for molecular discrimination between self and non-self is a challenging task for the innate immune system. RNA acts as a potent stimulus for pattern recognition receptors including in particular human Toll-like receptor 7 (TLR7). Certain RNA modifications limit potentially harmful self-recognition of endogenous RNA. Previous studies had identified the 2'-O-methylation of guanosine 18 (Gm18) within tRNAs as an antagonist of TLR7 leading to an impaired immune response. However, human tRNALys3 was non-stimulatory despite lacking Gm18. To identify the underlying molecular principle, interferon responses of human peripheral blood mononuclear cells to differentially modified tRNALys3 were determined. The investigation of synthetic modivariants allowed attributing a significant part of the immunosilencing effect to the 2'-O-methylthymidine (m5Um) modification at position 54. The effect was contingent upon the synergistic presence of both methyl groups at positions C5 and 2'O, as shown by the fact that neither Um54 nor m5U54 produced any effect alone. Testing permutations of the nucleobase at ribose-methylated position 54 suggested that the extent of silencing and antagonism of the TLR7 response was governed by hydrogen patterns and lipophilic interactions of the nucleobase. The results identify a new immune-modulatory endogenous RNA modification that limits TLR7 activation by RNA.


Asunto(s)
Inmunidad Innata/genética , Ácidos Nucleicos/inmunología , ARN de Transferencia/inmunología , Receptor Toll-Like 7/genética , Guanosina/química , Guanosina/inmunología , Humanos , Hidrógeno/química , Interferones/genética , Leucocitos Mononucleares/química , Leucocitos Mononucleares/inmunología , Metilación , Ácidos Nucleicos/química , Ácidos Nucleicos/genética , ARN de Transferencia/genética , Timidina/análogos & derivados , Timidina/química , Timidina/genética , Receptor Toll-Like 7/inmunología
7.
RNA ; 23(9): 1344-1351, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28576825

RESUMEN

Bacterial RNA serves an important function as activator of the innate immune system. In humans bacterial RNA is sensed by the endosomal receptors TLR7 and TLR8. Differences in the posttranscriptional modification profile of prokaryotic when compared with eukaryotic RNA allow innate immune cells to discriminate between "host" and "foreign" RNA. Ribose 2'-O-methylation is of particular importance and has been reported to antagonize TLR7/8 activation. Yet, the exact sequence context in which 2'-O-methylation has to occur to mediate its inhibitory activity remains largely undefined. On the basis of a naturally occurring 2'-O-methylated RNA sequence, we performed a systematic permutation of the methylated nucleotide as well as adjacent bases and hereby identify two minimal trinucleotide motifs within a 9-mer oligoribonucleotide that are necessary and sufficient to antagonize TLR7 and TLR8 activation, respectively. Given the growing interest in the development of inhibitors of nucleic acid-sensing TLRs for therapeutic purposes, these results will facilitate the rational design of such antagonists in the future.


Asunto(s)
Motivos de Nucleótidos , ARN/genética , ARN/metabolismo , Receptor Toll-Like 7/antagonistas & inhibidores , Receptor Toll-Like 8/antagonistas & inhibidores , Citidina , Humanos , Concentración 50 Inhibidora , Leucocitos Mononucleares , Metilación , Mutación , Nucleótidos/química , Nucleótidos/metabolismo , ARN/química , ARN Bacteriano/química , ARN Bacteriano/genética , ARN Bacteriano/metabolismo , ARN de Transferencia/química , ARN de Transferencia/genética , ARN de Transferencia/metabolismo , Receptor Toll-Like 7/metabolismo , Receptor Toll-Like 8/metabolismo
8.
Front Immunol ; 8: 312, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28392787

RESUMEN

A fundamental mechanism of the innate immune system is the recognition, via extra- and intracellular pattern-recognition receptors, of pathogen-associated molecular patterns. A prominent example is represented by foreign nucleic acids, triggering the activation of several signaling pathways. Among these, the endosomal toll-like receptor 7 (TLR7) is known to be activated by single-stranded RNA (ssRNA), which can be specifically influenced through elements of sequence structure and posttranscriptional modifications. Furthermore, small molecules TLR7 agonists (smTLRa) are applied as boosting adjuvants in vaccination processes. In this context, covalent conjugations between adjuvant and vaccines have been reported to exhibit synergistic effects. Here, we describe a concept to chemically combine three therapeutic functions in one RNA bioconjugate. This consists in the simultaneous TLR7 stimulation by ssRNA and smTLRa as well as the therapeutic function of the RNA itself, e.g., as a vaccinating or knockdown agent. We have hence synthesized bioconjugates of mRNA and siRNA containing covalently attached smTLRa and tested their function in TLR7 stimulation. Strikingly, the bioconjugates displayed decreased rather than synergistically increased stimulation. The decrease was distinct from the antagonistic action of an siRNA bearing a Gm motive, as observed by direct comparison of the effects in the presence of otherwise stimulatory RNA. In summary, these investigations showed that TRL7 activation can be impeded by bioconjugation of small molecules to RNA.

9.
Biomolecules ; 7(1)2017 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-28208788

RESUMEN

Analysis of RNA modifications by traditional physico-chemical approaches is labor  intensive,  requires  substantial  amounts  of  input  material  and  only  allows  site-by-site  measurements.  The  recent  development  of  qualitative  and  quantitative  approaches  based  on   next-generation sequencing (NGS) opens new perspectives for the analysis of various cellular RNA  species.  The  Illumina  sequencing-based  RiboMethSeq  protocol  was  initially  developed  and  successfully applied for mapping of ribosomal RNA (rRNA) 2'-O-methylations. This method also  gives excellent results in the quantitative analysis of rRNA modifications in different species and  under varying growth conditions. However, until now, RiboMethSeq was only employed for rRNA,  and the whole sequencing and analysis pipeline was only adapted to this long and rather conserved  RNA species. A deep understanding of RNA modification functions requires large and global  analysis datasets for other important RNA species, namely for transfer RNAs (tRNAs), which are  well known to contain a great variety of functionally-important modified residues. Here, we  evaluated the application of the RiboMethSeq protocol for the analysis of tRNA 2'-O-methylation in  Escherichia coli and in Saccharomyces cerevisiae. After a careful optimization of the bioinformatic  pipeline, RiboMethSeq proved to be suitable for relative quantification of methylation rates for  known modified positions in different tRNA species.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento/métodos , ARN de Transferencia/química , Análisis de Secuencia de ARN/métodos , Biología Computacional/métodos , Escherichia coli/química , Escherichia coli/genética , Metilación , ARN Bacteriano/química , ARN de Hongos/química , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...