Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Biochem Pharmacol ; : 116249, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38697308

RESUMEN

Metabolic dysfunction-associated steatotic liver disease (MASLD) is common worldwide. Genes and proteins contributing to drug disposition may show altered expression as MASLD progresses. To assess this further, we undertook transcriptomic and proteomic analysis of 137 pharmacogenes in liver biopsies from a large MASLD cohort. We performed sequencing on RNA from 216 liver biopsies (206 MASLD and 10 controls). Untargeted mass spectrometry proteomics was performed on a 103 biopsy subgroup. Selected RNA sequencing signals were replicated with an additional 187 biopsies. Comparison of advanced MASLD (fibrosis score 3/4) with milder disease (fibrosis score 0-2) by RNA sequencing showed significant alterations in expression of certain phase I, phase II and ABC transporters. For cytochromes P450, CYP2C19 showed the most significant decreased expression (30 % of that in mild disease) but significant decreased expression of other CYPs (including CYP2C8 and CYP2E1) also occurred. CYP2C19 also showed a significant decrease comparing the inflammatory form of MASLD (MASH) with non-MASH biopsies. Findings for CYP2C19 were confirmed in the replication cohort. Proteomics on the original discovery cohort confirmed decreased levels of several CYPs as MASLD advanced but this decrease was greatest for CYP2C19 where levels fell to 40 % control. This decrease may result in decreased CYP2C19 activity that could be problematic for prescription of drugs activated or metabolized by CYP2C19 as MASLD advances. More limited decreases for other P450s suggest fewer issues with non-CYP2C19 drug substrates. Negative correlations at RNA level between CYP2C19 and several cytokine genes provided initial insights into the mechanism underlying decreased expression.

2.
Mol Cell Proteomics ; 23(6): 100778, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38679389

RESUMEN

Trilaciclib, a cyclin-dependent kinase 4/6 inhibitor, was approved as a myeloprotective agent for protecting bone marrow from chemotherapy-induced damage in extensive-stage small cell lung cancer. This is achieved through the induction of a temporary halt in the cell cycle of bone marrow cells. While it has been studied in various cancer types, its potential in hematological cancers remains unexplored. This research aimed to investigate the efficacy of trilaciclib in hematological cancers. Utilizing mass spectrometry-based proteomics, we examined the alterations induced by trilaciclib in the chronic myeloid leukemia cell line, K562. Interestingly, trilaciclib promoted senescence in these cells rather than cell death, as observed in acute myeloid leukemia, acute lymphoblastic leukemia, and myeloma cells. In K562 cells, trilaciclib hindered cell cycle progression and proliferation by stabilizing cyclin-dependent kinase 4/6 and downregulating cell cycle-related proteins, along with the concomitant activation of autophagy pathways. Additionally, trilaciclib-induced senescence was also observed in the nonsmall cell lung carcinoma cell line, A549. These findings highlight trilaciclib's potential as a therapeutic option for hematological cancers and underscore the need to carefully balance senescence induction and autophagy modulation in chronic myeloid leukemia treatment, as well as in nonsmall cell lung carcinoma cell line.

3.
Nat Commun ; 14(1): 4714, 2023 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-37543597

RESUMEN

Vitamin B12 (cobalamin) is required for most human gut microbes, many of which are dependent on scavenging to obtain this vitamin. Since bacterial densities in the gut are extremely high, competition for this keystone micronutrient is severe. Contrasting with Enterobacteria, members of the dominant genus Bacteroides often encode several BtuB vitamin B12 outer membrane transporters together with a conserved array of surface-exposed B12-binding lipoproteins. Here we show that the BtuB transporters from Bacteroides thetaiotaomicron form stable, pedal bin-like complexes with surface-exposed BtuG lipoprotein lids, which bind B12 with high affinities. Closing of the BtuG lid following B12 capture causes destabilisation of the bound B12 by a conserved BtuB extracellular loop, causing translocation of the vitamin to BtuB and subsequent transport. We propose that TonB-dependent, lipoprotein-assisted small molecule uptake is a general feature of Bacteroides spp. that is important for the success of this genus in colonising the human gut.


Asunto(s)
Proteínas de Escherichia coli , Vitamina B 12 , Humanos , Vitamina B 12/metabolismo , Bacteroides/genética , Bacteroides/metabolismo , Proteínas de la Membrana Bacteriana Externa/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Vitaminas/metabolismo , Lipoproteínas/metabolismo , Proteínas de Escherichia coli/metabolismo
4.
Methods Mol Biol ; 2692: 237-246, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37365472

RESUMEN

The engulfment of "self" and "non-self" particles by immune and non-immune cells is crucial for maintaining homeostasis and combatting infection. Engulfed particles are contained within vesicles termed phagosomes that undergo dynamic fusion and fission events, which ultimately results in the formation of phagolysosomes that degrade the internalized cargo. This process is highly conserved and plays an important role in maintaining homeostasis, and disruptions in this are implicated in numerous inflammatory disorders. Given its broad role in innate immunity, it is important to understand how different stimuli or changes within the cell can shape the phagosome architecture. In this chapter, we describe a robust protocol for the isolation of polystyrene bead-induced phagosomes using sucrose density gradient centrifugation. This process results in a highly pure sample that can be used in downstream applications, namely, Western blotting.


Asunto(s)
Fagosomas , Poliestirenos , Fagosomas/metabolismo , Fagocitosis , Western Blotting , Inmunidad Innata
5.
J Card Surg ; 37(7): 2009-2014, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35438810

RESUMEN

BACKGROUND: The role of extracorporeal membrane oxygenation (ECMO) for patients with refractory respiratory failure due to coronavirus 2019 (COVID-19) is still unclear even now over a year into the pandemic. ECMO is becoming more commonplace even at smaller community hospitals. While the advantages of venovenous (VV) ECMO in acute respiratory distress syndrome (ARDS) from COVID-19 have not been fully determined, we believe the benefits outweighed the risks in our patient population. Here we describe all patients who underwent VV ECMO at our center. METHODS: All patients placed on ECMO at our center since the beginning of the pandemic, May 5, 2020, until February 20, 2021 were included in our study. All patients placed on ECMO during the time period described above were followed until discharge or death. The primary endpoint was in-hospital death. Secondary outcomes included discharge disposition, that is, whether patients were sent to a long-term acute care center (LTAC), inpatient rehabilitation, or went directly home. RESULTS: A total of 41 patients were placed on VV ECMO for refractory acute respiratory failure. Survival to discharge, the primary end point, was 63.4% (26/41). Inpatient mortality was 36.6% (15/41). CONCLUSIONS: We show here that a successful high-volume VV ECMO program for ARDS is achievable at even a medium-size community hospital. We think our success can be replicated by most small- and medium-size community hospitals with cardiothoracic surgery programs and intensivist teams.


Asunto(s)
COVID-19 , Síndrome de Dificultad Respiratoria , COVID-19/terapia , Mortalidad Hospitalaria , Hospitales Comunitarios , Humanos , Síndrome de Dificultad Respiratoria/etiología , Síndrome de Dificultad Respiratoria/terapia , Estudios Retrospectivos
6.
mBio ; 12(1)2021 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-33622717

RESUMEN

Staphylococcus aureus controls the progression of infection through the coordinated production of extracellular proteases, which selectively modulate virulence determinant stability. This is evidenced by our previous finding that a protease-null strain has a hypervirulent phenotype in a murine model of sepsis, resulting from the unchecked accumulation of virulence factors. Here, we dissect the individual roles of these proteases by constructing and assessing the pathogenic potential of a combinatorial protease mutant library. When strains were constructed bearing increasing numbers of secreted proteases, we observed a variable impact on infectious capacity, where some exhibited hypervirulence, while others phenocopied the wild-type. The common thread for hypervirulent strains was that each lacked both aureolysin and staphopain A. Upon assessment, we found that the combined loss of these two enzymes alone was necessary and sufficient to engender hypervirulence. Using proteomics, we identified a number of important secreted factors, including SPIN, LukA, Sbi, SEK, and PSMα4, as well as an uncharacterized chitinase-related protein (SAUSA300_0964), to be overrepresented in both the aur scpA and the protease-null mutants. When assessing the virulence of aur scpA SAUSA300_0964 and aur scpA lukA mutants, we found that hypervirulence was completely eliminated, whereas aur scpA spn and aur scpA sek strains elicited aggressive infections akin to the protease double mutant. Collectively, our findings shed light on the influence of extracellular proteases in controlling the infectious process and identifies SAUSA300_0964 as an important new component of the S. aureus virulence factor arsenal.IMPORTANCE A key feature of the pathogenic success of S. aureus is the myriad virulence factors encoded within its genome. These are subject to multifactorial control, ensuring their timely production only within an intended infectious niche. A key node in this network of control is the secreted proteases of S. aureus, who specifically and selectively modulate virulence factor stability. In our previous work we demonstrated that deletion of all 10 secreted proteases results in hypervirulence, since virulence factors exist unchecked, leading to overly aggressive infections. Here, using a combinatorial collection of protease mutants, we reveal that deletion of aureolysin and staphopain A is necessary and sufficient to elicit hypervirulence. Using proteomic techniques, we identify the collection of virulence factors that accumulate in hypervirulent protease mutants, and demonstrate that a well-known toxin (LukA) and an entirely novel secreted element (SAUSA300_0964) are the leading contributors to deadly infections observed in protease-lacking strains.


Asunto(s)
Péptido Hidrolasas/genética , Péptido Hidrolasas/metabolismo , Proteómica/métodos , Staphylococcus aureus/enzimología , Staphylococcus aureus/patogenicidad , Factores de Virulencia/metabolismo , Regulación Bacteriana de la Expresión Génica , Staphylococcus aureus/genética , Staphylococcus aureus/metabolismo , Virulencia , Factores de Virulencia/genética
7.
Microbiology (Reading) ; 165(11): 1181-1197, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31517596

RESUMEN

Key to onset and progression of periodontitis is a complex relationship between oral bacteria and the host. The organisms most associated with severe periodontitis are the periodontal pathogens of the red complex: Tannerella forsythia, Treponema denticola and Porphyromonas gingivalis. These organisms express sialidases, which cleave sialic acid from host glycoproteins, and contribute to disease through various mechanisms. Here, we expressed and purified recombinant P. gingivalis sialidase SiaPG (PG_0352) and characterized its activity on a number of substrates, including host sialoglycoproteins and highlighting the inability to cleave diacetylated sialic acids - a phenomenon overcome by the NanS sialate-esterase from T. forsythia. Indeed SiaPG required NanS to maximize sialic acid harvesting from heavily O-acetylated substrates such as bovine salivary mucin, hinting at the possibility of interspecies cooperation in sialic acid release from host sources by these members of the oral microbiota. Activity of SiaPG and P. gingivalis was inhibited using the commercially available chemotherapeutic zanamivir, indicating its potential as a virulence inhibitor, which also inhibited sialic acid release from mucin, and was capable of inhibiting biofilm formation of P. gingivalis on oral glycoprotein sources. Zanamivir also inhibited attachment and invasion of oral epithelial cells by P. gingivalis and other periodontal pathogens, both in monospecies but also in multispecies infection experiments, indicating potential to suppress host-pathogen interactions of a mixed microbial community. This study broadens our understanding of the multifarious roles of bacterial sialidases in virulence, and indicates that their inhibition with chemotherapeutics could be a promising strategy for periodontitis therapy.


Asunto(s)
Proteínas Bacterianas/metabolismo , Interacciones Huésped-Patógeno , Neuraminidasa/metabolismo , Porphyromonas gingivalis/enzimología , Factores de Virulencia/metabolismo , Proteínas Bacterianas/genética , Biopelículas/efectos de los fármacos , Biopelículas/crecimiento & desarrollo , Línea Celular , Interacciones Huésped-Patógeno/efectos de los fármacos , Humanos , Interacciones Microbianas , Mucinas/metabolismo , Mutación , Neuraminidasa/genética , Polisacáridos/metabolismo , Porphyromonas gingivalis/efectos de los fármacos , Porphyromonas gingivalis/crecimiento & desarrollo , Porphyromonas gingivalis/patogenicidad , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Sialoglicoproteínas/metabolismo , Tannerella forsythia/enzimología , Factores de Virulencia/genética , Zanamivir/farmacología
8.
Biochem J ; 475(6): 1159-1176, 2018 03 26.
Artículo en Inglés | MEDLINE | ID: mdl-29483296

RESUMEN

Bacterial sialidases cleave terminal sialic acid from a variety of host glycoproteins, and contribute to survival and growth of many human-dwelling bacterial species, including various pathogens. Tannerella forsythia, an oral, Gram-negative, fastidious anaerobe, is a key organism in periodontal disease and possesses a dedicated sialic acid utilisation and scavenging (nan) operon, including NanH sialidase. Here, we describe biochemical characterisation of recombinant NanH, including its action on host-relevant sialoglycans such as sialyl Lewis A and sialyl Lewis X (SLeA/X), and on human cell-attached sialic acids directly, uncovering that it is a highly active broad specificity sialidase. Furthermore, the N-terminal domain of NanH was hypothesised and proved to be capable of binding to a range of sialoglycans and non-sialylated derivatives with Kd in the micromolar range, as determined by steady-state tryptophan fluorescence spectroscopy, but it has no catalytic activity in isolation from the active site. We consider this domain to represent the founding member of a novel subfamily of carbohydrate-binding module (CBM), involved in glycosidase-ligand binding. In addition, we created a catalytically inactive version of the NanH enzyme (FRIP → YMAP) that retained its ability to bind sialic acid-containing ligands and revealed for the first time that binding activity of a CBM is enhanced by association with the catalytic domain. Finally, we investigated the importance of Lewis-type sialoglycans on T. forsythia-host interactions, showing that nanomolar amounts of SLeA/X were capable of reducing invasion of oral epithelial cells by T. forsythia, suggesting that these are key ligands for bacterial-cellular interactions during periodontal disease.


Asunto(s)
Metabolismo de los Hidratos de Carbono , Interacciones Huésped-Patógeno , Neuraminidasa/química , Neuraminidasa/metabolismo , Dominios y Motivos de Interacción de Proteínas , Tannerella forsythia/enzimología , Sitios de Unión , Metabolismo de los Hidratos de Carbono/genética , Dominio Catalítico , Interacciones Huésped-Patógeno/genética , Humanos , Ácido N-Acetilneuramínico/metabolismo , Neuraminidasa/genética , Dominios y Motivos de Interacción de Proteínas/genética , Ácidos Siálicos/metabolismo , Especificidad por Sustrato , Tannerella forsythia/genética , Tannerella forsythia/metabolismo , Tannerella forsythia/patogenicidad , Células Tumorales Cultivadas
9.
Microb Pathog ; 94: 12-20, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26318875

RESUMEN

Tannerella forsythia is a periodontal pathogen implicated in periodontitis. This gram-negative pathogen depends on exogenous peptidoglycan amino sugar N-acetylmuramic acid (NAM) for growth. In the biofilm state the bacterium can utilize sialic acid (Neu5Ac) instead of NAM to sustain its growth. Thus, the sialic acid utilization system of the bacterium plays a critical role in the growth and survival of the organism in the absence of NAM. We sought the function of a T. forsythia gene annotated as nanT coding for an inner-membrane sugar transporter located on a sialic acid utilization genetic cluster. To determine the function of this putative sialic acid transporter, an isogenic nanT-deletion mutant generated by allelic replacement strategy was evaluated for biofilm formation on NAM or Neu5Ac, and survival on KB epithelial cells. Moreover, since T. forsythia forms synergistic biofilms with Fusobacterium nucleatum, co-biofilm formation activity in mixed culture and sialic acid uptake in culture were also assessed. The data showed that the nanT-inactivated mutant of T. forsythia was attenuated in its ability to uptake sialic acid. The mutant formed weaker biofilms compared to the wild-type strain in the presence of sialic acid and as co-biofilms with F. nucleatum. Moreover, compared to the wild-type T. forsythia nanT-inactivated mutant showed reduced survival when incubated on KB epithelial cells. Taken together, the data presented here demonstrate that NanT-mediated sialic transportation is essential for sialic acid utilization during biofilm growth and survival of the organism on epithelial cells and implies sialic acid might be key for its survival both in subgingival biofilms and during infection of human epithelial cells in vivo.


Asunto(s)
Biopelículas/crecimiento & desarrollo , Células Epiteliales/microbiología , Transportadores de Anión Orgánico/metabolismo , Simportadores/metabolismo , Tannerella forsythia/metabolismo , Adhesión Bacteriana , Proteínas de la Membrana Bacteriana Externa/genética , Proteínas de la Membrana Bacteriana Externa/metabolismo , ADN Bacteriano/genética , Fusobacterium nucleatum/crecimiento & desarrollo , Fusobacterium nucleatum/metabolismo , Genes Bacterianos , Infecciones por Bacterias Gramnegativas/genética , Infecciones por Bacterias Gramnegativas/metabolismo , Humanos , Células KB , Ácidos Murámicos/metabolismo , Neuraminidasa/metabolismo , Transportadores de Anión Orgánico/biosíntesis , Transportadores de Anión Orgánico/genética , Eliminación de Secuencia , Simportadores/biosíntesis , Simportadores/genética , Tannerella forsythia/genética , Tannerella forsythia/crecimiento & desarrollo
10.
Biochem J ; 472(2): 157-67, 2015 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-26378150

RESUMEN

Tannerella forsythia, a Gram-negative member of the Bacteroidetes has evolved to harvest and utilize sialic acid. The most common sialic acid in humans is a mono-N-acetylated version termed Neu5Ac (5-N-acetyl-neuraminic acid). Many bacteria are known to access sialic acid using sialidase enzymes. However, in humans a high proportion of sialic acid contains a second acetyl group attached via an O-group, i.e. chiefly O-acetylated Neu5,9Ac2 or Neu5,4Ac2. This diacetylated sialic acid is not cleaved efficiently by many sialidases and in order to access diacetylated sialic acid, some organisms produce sialate-O-acetylesterases that catalyse the removal of the second acetyl group. In the present study, we performed bioinformatic and biochemical characterization of a putative sialate-O-acetylesterase from T. forsythia (NanS), which contains two putative SGNH-hydrolase domains related to sialate-O-acetylesterases from a range of organisms. Purification of recombinant NanS revealed an esterase that has activity against Neu5,9Ac2 and its glycolyl form Neu5Gc,9Ac. Importantly, the enzyme did not remove acetyl groups positioned at the 4-O position (Neu5,4Ac2). In addition NanS can act upon complex N-glycans released from a glycoprotein [erythropoietin (EPO)], bovine submaxillary mucin and oral epithelial cell-bound glycans. When incubated with its cognate sialidase, NanS increased sialic acid release from mucin and oral epithelial cell surfaces, implying that this esterase improves sialic acid harvesting for this pathogen and potentially other members of the oral microbiome. In summary, we have characterized a novel sialate-O-acetylesterase that contributes to the sialobiology of this important human pathogen and has potential applications in the analysis of sialic acid diacetylation of biologics in the pharmaceutical industry.


Asunto(s)
Acetilesterasa/metabolismo , Proteínas Bacterianas/metabolismo , Bacteroides/enzimología , Mucosa Bucal/metabolismo , Ácidos Neuramínicos/metabolismo , Neuraminidasa/metabolismo , Ácidos Siálicos/metabolismo , Acetilación , Acetilesterasa/química , Acetilesterasa/genética , Animales , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Dominio Catalítico , Bovinos , Línea Celular Tumoral , Eritropoyetina/genética , Eritropoyetina/metabolismo , Humanos , Concentración de Iones de Hidrógeno , Hidrólisis , Mucosa Bucal/citología , Mucosa Bucal/microbiología , Neuraminidasa/química , Polisacáridos/química , Polisacáridos/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Homología de Secuencia de Aminoácido , Sialoglicoproteínas/química , Sialoglicoproteínas/metabolismo , Sialomucinas/química , Sialomucinas/metabolismo , Especificidad por Sustrato
11.
Adv Microb Physiol ; 65: 257-335, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25476768

RESUMEN

Oral colonising bacteria are highly adapted to the various environmental niches harboured within the mouth, whether that means while contributing to one of the major oral diseases of caries, pulp infections, or gingival/periodontal disease or as part of a commensal lifestyle. Key to these infections is the ability to adhere to surfaces via a range of specialised adhesins targeted at both salivary and epithelial proteins, their glycans and to form biofilm. They must also resist the various physical stressors they are subjected to, including pH and oxidative stress. Possibly most strikingly, they have developed the ability to harvest both nutrient sources provided by the diet and those derived from the host, such as protein and surface glycans. We have attempted to review recent developments that have revealed much about the molecular mechanisms at work in shaping the physiology of oral bacteria and how we might use this information to design and implement new treatment strategies.


Asunto(s)
Adaptación Fisiológica , Fenómenos Fisiológicos Bacterianos , Biopelículas , Boca/microbiología , Enfermedades Periodontales/microbiología , Enfermedades Dentales/microbiología , Adhesinas Bacterianas/metabolismo , Bacterias/metabolismo , Bacterias/patogenicidad , Interacciones Huésped-Patógeno , Humanos , Boca/fisiología , Saliva/microbiología , Diente/microbiología
12.
Mol Biol Cell ; 16(2): 849-60, 2005 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-15601896

RESUMEN

An integral part of cell division is the separation of daughter cells via cytokinesis. There is now good evidence that the completion of cytokinesis requires coordinated membrane trafficking to deliver new membrane to the tip of the furrow and to complete the abscission. Here we have examined membrane traffic in cytokinesis and describe several novel observations. First, we show that Rab11- and FIP3-containing recycling endosomes accumulate near the cleavage furrow and are required for successful completion of cytokinesis. Second, we demonstrate that the Rab11-FIP3 protein complex is intimately involved in the delivery of endosomes to the cleavage furrow. Significantly, although FIP3 recruitment to endosomes is Rab11 dependent, we find that the targeting of FIP3 to the midbody is independent of Rab11. Third, we show that the Rab11-FIP3 complex is required for a late stage of cytokinesis, possibly abscission. Finally, we demonstrate that localization of FIP3 is subject to substantial spatial and temporal regulation. These data provide the first detailed analysis of recycling endosomes in cell division and provide a new model for membrane traffic to the furrow. We propose that the dynamic Rab11-FIP3 interaction controls the delivery, targeting, and fusion of recycling endosomes with furrow during late cytokinesis and abscission.


Asunto(s)
Membrana Celular/metabolismo , Citocinesis , Proteínas de Unión al ADN/metabolismo , Endosomas/metabolismo , Factores de Transcripción/metabolismo , Proteínas de Unión al GTP rab/metabolismo , Animales , Proteínas Portadoras/metabolismo , Ciclo Celular , Citometría de Flujo , Transferencia Resonante de Energía de Fluorescencia , Células HeLa , Humanos , Quinasa I-kappa B , Ratones , Microscopía Confocal , Microscopía por Video , Células 3T3 NIH , Proteínas Serina-Treonina Quinasas/metabolismo , Transporte de Proteínas , Interferencia de ARN , Factores de Tiempo , Factores Estimuladores hacia 5'
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA