Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38798596

RESUMEN

Reconstructing the DNA of ancestors from their descendants has the potential to empower phenotypic analyses (including association and genetic nurture studies), improve pedigree reconstruction, and shed light on the ancestral population and phenotypes of ancestors. We developed HAPI-RECAP, a method that reconstructs the DNA of parents from full siblings and their relatives. This tool leverages HAPI2's output, a new phasing approach that applies to siblings (and optionally one or both parents) and reliably infers parent haplotypes but does not link the ungenotyped parents' DNA across chromosomes or between segments flanking ambiguities. By combining IBD between the reconstructed parents and the relatives, HAPI-RECAP resolves the source parent of these segments. Moreover, the method exploits crossovers the children inherited and sex-specific genetic maps to infer the reconstructed parents' sexes. We validated these methods on research participants from both 23andMe, Inc. and the San Antonio Mexican American Family Studies. Given data for one parent, HAPI2 reconstructs large fractions of the missing parent's DNA, between 77.6% and 99.97% among all families, and 90.3% on average in three- and four-child families. When reconstructing both parents, HAPI-RECAP inferred between 33.2% and 96.6% of the parents' genotypes, averaging 70.6% in four-child families. Reconstructed genotypes have average error rates < 10-3, or comparable to those from direct genotyping. HAPI-RECAP inferred the parent sexes 100% correctly given IBD-linked segments and can also reconstruct parents without any IBD. As datasets grow in size, more families will be implicitly collected; HAPI-RECAP holds promise to enable high quality parent genotype reconstruction.

2.
bioRxiv ; 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38766004

RESUMEN

Haplotype phasing, the process of determining which genetic variants are physically located on the same chromosome, is crucial for various genetic analyses. In this study, we first benchmark SHAPEIT and Beagle, two state-of-the-art phasing methods, on two large datasets: > 8 million diverse, research-consented 23andMe, Inc. customers and the UK Biobank (UKB). We find that both perform exceptionally well. Beagle's median switch error rate (SER) (after excluding single SNP switches) in white British trios from UKB is 0.026% compared to 0.00% for European ancestry 23andMe research participants; 55.6% of European ancestry 23andMe research participants have zero non-single SNP switches, compared to 42.4% of white British trios. South Asian ancestry 23andMe research participants have the highest median SER amongst the 23andMe populations, but it is still remarkably low at 0.46%. We also investigate the relationship between identity-by-descent (IBD) and SER, finding that switch errors tend to occur in regions of little or no IBD segment coverage. SHAPEIT and Beagle excel at 'intra-chromosomal' phasing, but lack the ability to phase across chromosomes, motivating us to develop an inter-chromosomal phasing method, called HAPTIC ( HAP lotype TI ling and C lustering), that assigns paternal and maternal variants discretely genome-wide. Our approach uses identity-by-descent (IBD) segments to phase blocks of variants on different chromosomes. HAPTIC represents the segments a focal individual shares with their relatives as nodes in a signed graph and performs bipartite clustering on the signed graph using spectral clustering. We test HAPTIC on 1022 UKB trios, yielding a median phase error of 0.08% in regions covered by IBD segments (33.5% of sites). We also ran HAPTIC in the 23andMe database and found a median phase error rate (the rate of mismatching alleles between the inferred and true phase) of 0.92% in Europeans (93.8% of sites) and 0.09% in admixed Africans (92.7% of sites). HAPTIC's precision depends heavily on data from relatives, so will increase as datasets grow larger and more diverse. HAPTIC enables analyses that require the parent-of-origin of variants, such as association studies and ancestry inference of untyped parents.

3.
Science ; 381(6657): eade4995, 2023 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-37535739

RESUMEN

Few African Americans have been able to trace family lineages back to ancestors who died before the 1870 United States Census, the first in which all Black people were listed by name. We analyzed 27 individuals from Maryland's Catoctin Furnace African American Cemetery (1774-1850), identifying 41,799 genetic relatives among consenting research participants in 23andMe, Inc.'s genetic database. One of the highest concentrations of close relatives is in Maryland, suggesting that descendants of the Catoctin individuals remain in the area. We find that many of the Catoctin individuals derived African ancestry from the Wolof or Kongo groups and European ancestry from Great Britain and Ireland. This study demonstrates the power of joint analysis of historical DNA and large datasets generated through direct-to-consumer ancestry testing.


Asunto(s)
Negro o Afroamericano , Bases de Datos Genéticas , Humanos , Negro o Afroamericano/genética , Irlanda , Maryland , Estados Unidos , Análisis de Secuencia de ADN
4.
Methods Mol Biol ; 2545: 123-138, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36720810

RESUMEN

This chapter describes the usage of homologizer to phase gene copies into polyploid subgenomes. Allopolyploids contain multiple copies of each genetic locus, where each copy potentially belongs to a different subgenome with its own distinct evolutionary history. If gene copies across different loci are incorrectly phased (i.e., assigned to the wrong subgenome), then the bifurcating tree assumption underlying multilocus phylogenetic inference and related analyses will be violated, leading to unsound results. homologizer is a highly flexible Bayesian method that uses a phylogenetic framework to infer the posterior probabilities of the phasing of gene copies into subgenomes. We describe how to prepare input data and other considerations needed to perform homologizer analyses and demonstrate how to visualize and interpret the results. We first walk through a basic example using homologizer to phase gene copies into polyploid subgenomes and then demonstrate how homologizer can be used as a hypothesis-testing tool to detect non-homeologous sequences such as hidden paralogs or allelic variation through the tools of Bayesian model comparison.


Asunto(s)
Evolución Biológica , Poliploidía , Humanos , Filogenia , Teorema de Bayes , Alelos
5.
Am J Hum Genet ; 108(11): 2052-2070, 2021 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-34739834

RESUMEN

Pedigree inference from genotype data is a challenging problem, particularly when pedigrees are sparsely sampled and individuals may be distantly related to their closest genotyped relatives. We present a method that infers small pedigrees of close relatives and then assembles them into larger pedigrees. To assemble large pedigrees, we introduce several formulas and tools including a likelihood for the degree separating two small pedigrees, a generalization of the fast DRUID point estimate of the degree separating two pedigrees, a method for detecting individuals who share background identity-by-descent (IBD) that does not reflect recent common ancestry, and a method for identifying the ancestral branches through which distant relatives are connected. Our method also takes several approaches that help to improve the accuracy and efficiency of pedigree inference. In particular, we incorporate age information directly into the likelihood rather than using ages only for consistency checks and we employ a heuristic branch-and-bound-like approach to more efficiently explore the space of possible pedigrees. Together, these approaches make it possible to construct large pedigrees that are challenging or intractable for current inference methods.


Asunto(s)
Genotipo , Linaje , Algoritmos , Femenino , Humanos , Funciones de Verosimilitud , Masculino , Modelos Genéticos
6.
Am J Bot ; 108(10): 2015-2037, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34694624

RESUMEN

PREMISE: Expanded phylogenetic analyses of the Hawaiian silversword alliance (Argyroxiphium, Dubautia, Wilkesia; Compositae) were undertaken to assess evolutionary and biogeographic informativeness of cytonuclear discordance and any biases in evolutionary directionality of ecological transitions within this prominent example of adaptive radiation. METHODS: Samples spanning the geographic and ecological distributions of all recognized taxa were included in phylogenetic and biogeographic analyses of nuclear ribosomal DNA (nrDNA) and cpDNA sequences. Bayesian model testing approaches were used to model ecological evolution and the evolution of nuclear chromosomal arrangements while accounting for phylogenetic uncertainty. RESULTS: Cytonuclear discordance detected previously appears to reflect chloroplast capture, at least in part, with nrDNA trees being largely congruent with nuclear chromosomal structural data and fine-scale taxonomy. Comparison of biogeographic histories estimated from the posterior distributions of nrDNA and cpDNA trees, including inferred chloroplast-capture events, provides additional resolution of dispersal history, including a back-dispersal to Maui Nui from Hawai'i. A newly resolved major nrDNA clade of endemic Kaua'i taxa that mostly were described as new-to-science since the 1980s strengthens the earlier hypothesis that diversification on Kaua'i has not waned since the island began to decline in area through subsidence and erosion. Bias in habitat shifts was estimated, with transitions from dry-to-mesic or -wet and from wet-to-mesic or -bog habitats dominating diversification of the silversword alliance from a dry-adapted tarweed ancestor. CONCLUSIONS: The habitat-transition biases estimated here may indicate more limited pathways of ecological evolution than proposed previously for an adaptive radiation involving such major ecological shifts.


Asunto(s)
Asteraceae , Teorema de Bayes , Ecosistema , Evolución Molecular , Hawaii , Filogenia
7.
Mol Biol Evol ; 38(5): 2131-2151, 2021 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-33355662

RESUMEN

Estimating the genomic location and length of identical-by-descent (IBD) segments among individuals is a crucial step in many genetic analyses. However, the exponential growth in the size of biobank and direct-to-consumer genetic data sets makes accurate IBD inference a significant computational challenge. Here we present the templated positional Burrows-Wheeler transform (TPBWT) to make fast IBD estimates robust to genotype and phasing errors. Using haplotype data simulated over pedigrees with realistic genotyping and phasing errors, we show that the TPBWT outperforms other state-of-the-art IBD inference algorithms in terms of speed and accuracy. For each phase-aware method, we explore the false positive and false negative rates of inferring IBD by segment length and characterize the types of error commonly found. Our results highlight the fragility of most phased IBD inference methods; the accuracy of IBD estimates can be highly sensitive to the quality of haplotype phasing. Additionally, we compare the performance of the TPBWT against a widely used phase-free IBD inference approach that is robust to phasing errors. We introduce both in-sample and out-of-sample TPBWT-based IBD inference algorithms and demonstrate their computational efficiency on massive-scale data sets with millions of samples. Furthermore, we describe the binary file format for TPBWT-compressed haplotypes that results in fast and efficient out-of-sample IBD computes against very large cohort panels. Finally, we demonstrate the utility of the TPBWT in a brief empirical analysis, exploring geographic patterns of haplotype sharing within Mexico. Hierarchical clustering of IBD shared across regions within Mexico reveals geographically structured haplotype sharing and a strong signal of isolation by distance. Our software implementation of the TPBWT is freely available for noncommercial use in the code repository (https://github.com/23andMe/phasedibd, last accessed January 11, 2021).


Asunto(s)
Genoma Humano , Haplotipos , Programas Informáticos , Algoritmos , Reacciones Falso Negativas , Reacciones Falso Positivas , Humanos , México , Filogeografía
8.
Am J Hum Genet ; 107(2): 265-277, 2020 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-32707084

RESUMEN

According to historical records of transatlantic slavery, traders forcibly deported an estimated 12.5 million people from ports along the Atlantic coastline of Africa between the 16th and 19th centuries, with global impacts reaching to the present day, more than a century and a half after slavery's abolition. Such records have fueled a broad understanding of the forced migration from Africa to the Americas yet remain underexplored in concert with genetic data. Here, we analyzed genotype array data from 50,281 research participants, which-combined with historical shipping documents-illustrate that the current genetic landscape of the Americas is largely concordant with expectations derived from documentation of slave voyages. For instance, genetic connections between people in slave trading regions of Africa and disembarkation regions of the Americas generally mirror the proportion of individuals forcibly moved between those regions. While some discordances can be explained by additional records of deportations within the Americas, other discordances yield insights into variable survival rates and timing of arrival of enslaved people from specific regions of Africa. Furthermore, the greater contribution of African women to the gene pool compared to African men varies across the Americas, consistent with literature documenting regional differences in slavery practices. This investigation of the transatlantic slave trade, which is broad in scope in terms of both datasets and analyses, establishes genetic links between individuals in the Americas and populations across Atlantic Africa, yielding a more comprehensive understanding of the African roots of peoples of the Americas.


Asunto(s)
Población Negra/genética , Polimorfismo de Nucleótido Simple/genética , África , Américas , Personas Esclavizadas , Europa (Continente) , Femenino , Humanos , Masculino
9.
Syst Biol ; 69(4): 774-794, 2020 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-31730194

RESUMEN

Species selection, the effect of heritable traits in generating between-lineage diversification rate differences, provides a valuable conceptual framework for understanding the relationship between traits, diversification, and phylogenetic tree shape. An important challenge, however, is that the nature of real diversification landscapes-curves or surfaces which describe the propensity of species-level lineages to diversify as a function of one or more traits-remains poorly understood. Here, we present a novel, time-stratified extension of the QuaSSE model in which speciation/extinction rate is specified as a static or temporally shifting Gaussian or skewed-Gaussian function of the diversification trait. We then use simulations to show that the generally imbalanced nature of real phylogenetic trees, as well as their generally greater than expected frequency of deep branching events, are typical outcomes when diversification is treated as a dynamic, trait-dependent process. Focusing on four basic models (Gaussian-speciation with and without background extinction; skewed-speciation; Gaussian-extinction), we also show that particular features of the species selection regime produce distinct tree shape signatures and that, consequently, a combination of tree shape metrics has the potential to reveal the species selection regime under which a particular lineage diversified. We evaluate this idea empirically by comparing the phylogenetic trees of plant lineages diversifying within climatically and geologically stable environments of the Greater Cape Floristic Region, with those of lineages diversifying in environments that have experienced major change through the Late Miocene-Pliocene. Consistent with our expectations, the trees of lineages diversifying in a dynamic context are less balanced, show a greater concentration of branching events close to the present, and display stronger diversification rate-trait correlations. We suggest that species selection plays an important role in shaping phylogenetic trees but recognize the need for an explicit probabilistic framework within which to assess the likelihoods of alternative diversification scenarios as explanations of a particular tree shape. [Cape flora; diversification landscape; environmental change; gamma statistic; species selection; time-stratified QuaSSE model; trait-dependent diversification; tree imbalance.].


Asunto(s)
Clasificación/métodos , Modelos Biológicos , Filogenia , Simulación por Computador , Especiación Genética , Plantas/clasificación
10.
New Phytol ; 224(3): 1252-1265, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31617595

RESUMEN

If particular traits consistently affect rates of speciation and extinction, broad macroevolutionary patterns can be interpreted as consequences of selection at high levels of the biological hierarchy. Identifying traits associated with diversification rates is difficult because of the wide variety of characters under consideration and the statistical challenges of testing for associations from comparative phylogenetic data. Ploidy (diploid vs polyploid states) and breeding system (self-incompatible vs self-compatible states) are both thought to be drivers of differential diversification in angiosperms. We fit 29 diversification models to extensive trait and phylogenetic data in Solanaceae and investigate how speciation and extinction rate differences are associated with ploidy, breeding system, and the interaction between these traits. We show that diversification patterns in Solanaceae are better explained by breeding system and an additional unobserved factor, rather than by ploidy. We also find that the most common evolutionary pathway to polyploidy in Solanaceae occurs via direct breakdown of self-incompatibility by whole genome duplication, rather than indirectly via breakdown followed by polyploidization. Comparing multiple stochastic diversification models that include complex trait interactions alongside hidden states enhances our understanding of the macroevolutionary patterns in plant phylogenies.


Asunto(s)
Biodiversidad , Filogenia , Fitomejoramiento , Ploidias , Teorema de Bayes , Modelos Biológicos , Poliploidía , Carácter Cuantitativo Heredable
11.
Syst Biol ; 68(3): 505-519, 2019 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-30476308

RESUMEN

A major goal of evolutionary biology is to identify key evolutionary transitions that correspond with shifts in speciation and extinction rates. Stochastic character mapping has become the primary method used to infer the timing, nature, and number of character state transitions along the branches of a phylogeny. The method is widely employed for standard substitution models of character evolution. However, current approaches cannot be used for models that specifically test the association of character state transitions with shifts in diversification rates such as state-dependent speciation and extinction (SSE) models. Herein, we introduce a new stochastic character mapping algorithm that overcomes these limitations, and apply it to study mating system evolution over a time-calibrated phylogeny of the plant family Onagraceae. Utilizing a hidden state SSE model we tested the association of the loss of self-incompatibility (SI) with shifts in diversification rates. We found that self-compatible lineages have higher extinction rates and lower net-diversification rates compared with self-incompatible lineages. Furthermore, these results provide empirical evidence for the "senescing" diversification rates predicted in highly selfing lineages: our mapped character histories show that the loss of SI is followed by a short-term spike in speciation rates, which declines after a time lag of several million years resulting in negative net-diversification. Lineages that have long been self-compatible, such as Fuchsia and Clarkia, are in a previously unrecognized and ongoing evolutionary decline. Our results demonstrate that stochastic character mapping of SSE models is a powerful tool for examining the timing and nature of both character state transitions and shifts in diversification rates over the phylogeny.


Asunto(s)
Clasificación/métodos , Modelos Biológicos , Onagraceae/clasificación , Filogenia , Algoritmos , Extinción Biológica , Especiación Genética
12.
Evolution ; 72(11): 2343-2359, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30198108

RESUMEN

The Hawaiian silversword alliance (Asteraceae) is an iconic adaptive radiation. However, like many island plant lineages, no fossils have been assigned to the clade. As a result, the clade's age and diversification rate are not known precisely, making it difficult to test biogeographic hypotheses about the radiation. In lieu of fossils, paleogeographically structured biogeographic processes may inform species divergence times; for example, an island must first exist for a clade to radiate upon it. We date the silversword clade and test biogeographic hypotheses about its radiation across the Hawaiian Archipelago by modeling interactions between species relationships, molecular evolution, biogeographic scenarios, divergence times, and island origination times using the Bayesian phylogenetic framework, RevBayes. The ancestor of living silverswords most likely colonized the modern Hawaiian Islands once from the mainland approximately 5.1 Ma, with the most recent common ancestor of extant silversword lineages first appearing approximately 3.5 Ma. Applying an event-based test of the progression rule of island biogeography, we found strong evidence that the dispersal process favors old-to-young directionality, but strong evidence for diversification continuing unabated into later phases of island ontogeny, particularly for Kaua'i. This work serves as a general example for how diversification studies benefit from incorporating biogeographic and paleogeographic components.


Asunto(s)
Asteraceae/clasificación , Filogeografía , Evolución Molecular , Especiación Genética , Hawaii , Islas , Dispersión de las Plantas
13.
Am J Bot ; 105(2): 275-286, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29573405

RESUMEN

PREMISE OF THE STUDY: Inferring the evolution of characters in Isoëtes has been problematic, as these plants are morphologically conservative and yet highly variable and homoplasious within that conserved base morphology. However, molecular phylogenies have given us a valuable tool for testing hypotheses of character evolution within the genus, such as the hypothesis of ongoing morphological reductions. METHODS: We examined the reduction in lobe number on the underground trunk, or corm, by combining the most recent molecular phylogeny with morphological descriptions gathered from the literature and observations of living specimens. Ancestral character states were inferred using nonstationary evolutionary models, reversible-jump MCMC, and Bayesian model averaging. KEY RESULTS: Our results support the hypothesis of a directional reduction in lobe number in Isoëtes, with the best-supported model of character evolution being one of irreversible reduction. Furthermore, the most probable ancestral corm lobe number of extant Isoëtes is three, and a reduction to two lobes has occurred at least six times. CONCLUSIONS: From our results, we can infer that corm lobation, like many other traits in Isoëtes, shows a degree of homoplasy, and yet also shows ongoing evolutionary reduction.


Asunto(s)
Tallos de la Planta/anatomía & histología , Plantas/anatomía & histología , Teorema de Bayes , Evolución Biológica , Filogenia
14.
Syst Biol ; 67(2): 195-215, 2018 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-28945917

RESUMEN

ABSSTRACT: Chromosome number is a key feature of the higher-order organization of the genome, and changes in chromosome number play a fundamental role in evolution. Dysploid gains and losses in chromosome number, as well as polyploidization events, may drive reproductive isolation and lineage diversification. The recent development of probabilistic models of chromosome number evolution in the groundbreaking work by Mayrose et al. (2010, ChromEvol) have enabled the inference of ancestral chromosome numbers over molecular phylogenies and generated new interest in studying the role of chromosome changes in evolution. However, the ChromEvol approach assumes all changes occur anagenetically (along branches), and does not model events that are specifically cladogenetic. Cladogenetic changes may be expected if chromosome changes result in reproductive isolation. Here we present a new class of models of chromosome number evolution (called ChromoSSE) that incorporate both anagenetic and cladogenetic change. The ChromoSSE models allow us to determine the mode of chromosome number evolution; is chromosome evolution occurring primarily within lineages, primarily at lineage splitting, or in clade-specific combinations of both? Furthermore, we can estimate the location and timing of possible chromosome speciation events over the phylogeny. We implemented ChromoSSE in a Bayesian statistical framework, specifically in the software RevBayes, to accommodate uncertainty in parameter estimates while leveraging the full power of likelihood based methods. We tested ChromoSSE's accuracy with simulations and re-examined chromosomal evolution in Aristolochia, Carex section Spirostachyae, Helianthus, Mimulus sensu lato (s.l.), and Primula section Aleuritia, finding evidence for clade-specific combinations of anagenetic and cladogenetic dysploid and polyploid modes of chromosome evolution. [Anagenetic; Bayes factors; chromosome evolution; chromosome speciation; chromoSSE; cladogenetic; dysploidy; phylogenetic models; polyploidy; reversible-jump Markov chain Monte Carlo; whole genome duplication.].


Asunto(s)
Clasificación , Evolución Molecular , Modelos Genéticos , Teorema de Bayes , Filogenia , Plantas/clasificación , Plantas/genética
15.
BMC Biol ; 15(1): 96, 2017 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-29073895

RESUMEN

BACKGROUND: California is a world floristic biodiversity hotspot where the terms neo- and paleo-endemism were first applied. Using spatial phylogenetics, it is now possible to evaluate biodiversity from an evolutionary standpoint, including discovering significant areas of neo- and paleo-endemism, by combining spatial information from museum collections and DNA-based phylogenies. Here we used a distributional dataset of 1.39 million herbarium specimens, a phylogeny of 1083 operational taxonomic units (OTUs) and 9 genes, and a spatial randomization test to identify regions of significant phylogenetic diversity, relative phylogenetic diversity, and phylogenetic endemism (PE), as well as to conduct a categorical analysis of neo- and paleo-endemism (CANAPE). RESULTS: We found (1) extensive phylogenetic clustering in the South Coast Ranges, southern Great Valley, and deserts of California; (2) significant concentrations of short branches in the Mojave and Great Basin Deserts and the South Coast Ranges and long branches in the northern Great Valley, Sierra Nevada foothills, and the northwestern and southwestern parts of the state; (3) significant concentrations of paleo-endemism in Northwestern California, the northern Great Valley, and western Sonoran Desert, and neo-endemism in the White-Inyo Range, northern Mojave Desert, and southern Channel Islands. Multiple analyses were run to observe the effects on significance patterns of using different phylogenetic tree topologies (uncalibrated trees versus time-calibrated ultrametric trees) and using different representations of OTU ranges (herbarium specimen locations versus species distribution models). CONCLUSIONS: These analyses showed that examining the geographic distributions of branch lengths in a statistical framework adds a new dimension to California floristics that, in comparison with climatic data, helps to illuminate causes of endemism. In particular, the concentration of significant PE in more arid regions of California extends previous ideas about aridity as an evolutionary stimulus. The patterns seen are largely robust to phylogenetic uncertainty and time calibration but are sensitive to the use of occurrence data versus modeled ranges, indicating that special attention toward improving geographic distributional data should be top priority in the future for advancing understanding of spatial patterns of biodiversity.


Asunto(s)
Biodiversidad , Evolución Biológica , Conservación de los Recursos Naturales , Filogenia , Plantas , California , Plantas/clasificación , Análisis Espacial
16.
Mol Phylogenet Evol ; 112: 88-95, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28450227

RESUMEN

Current geographic patterns of biodiversity are a consequence of the evolutionary history of the lineages that comprise them. This study was aimed at exploring how evolutionary features of the vascular flora of Chile are distributed across the landscape. Using a phylogeny at the genus level for 87% of the Chilean vascular flora, and a geographic database of sample localities, we calculated phylogenetic diversity (PD), phylogenetic endemism (PE), relative PD (RPD), and relative PE (RPE). Categorical Analyses of Neo- and Paleo-Endemism (CANAPE) were also performed, using a spatial randomization to assess statistical significance. A cluster analysis using range-weighted phylogenetic turnover was used to compare among grid cells, and with known Chilean bioclimates. PD patterns were concordant with known centers of high taxon richness and the Chilean biodiversity hotspot. In addition, several other interesting areas of concentration of evolutionary history were revealed as potential conservation targets. The south of the country shows areas of significantly high RPD and a concentration of paleo-endemism, and the north shows areas of significantly low PD and RPD, and a concentration of neo-endemism. Range-weighted phylogenetic turnover shows high congruence with the main macrobioclimates of Chile. Even though the study was done at the genus level, the outcome provides an accurate outline of phylogenetic patterns that can be filled in as more fine-scaled information becomes available.


Asunto(s)
Biodiversidad , Evolución Biológica , Magnoliopsida/genética , Chile , Análisis por Conglomerados , Magnoliopsida/clasificación , Filogenia
17.
Am J Bot ; 104(3): 487-501, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28341628

RESUMEN

PREMISE OF THE STUDY: California's vascular flora is the most diverse and threatened in temperate North America. Previous studies of spatial patterns of Californian plant diversity have been limited by traditional metrics, non-uniform geographic units, and distributional data derived from floristic descriptions for only a subset of species. METHODS: We revisited patterns of sampling intensity, species richness, and relative endemism in California based on equal-area spatial units, the full vascular flora, and specimen-based distributional data. We estimated richness, weighted endemism (inverse range-weighting of species), and corrected weighted endemism (weighted endemism corrected for richness), and performed a randomization test for significantly high endemism. KEY RESULTS: Possible biases in herbarium data do not obscure patterns of high richness and endemism at the spatial resolution studied. High species richness was sometimes associated with significantly high endemism (e.g., Klamath Ranges) but often not. In Stebbins and Major's (1965) main endemism hotspot, Southwestern California, species richness is high across much of the Peninsular and Transverse ranges but significantly high endemism is mostly localized to the Santa Rosa and San Bernardino mountains. In contrast, species richness is low in the Channel Islands, where endemism is significantly high, as also found for much of the Death Valley region. CONCLUSIONS: Measures of taxonomic richness, even with greater weighting of range-restricted taxa, are insufficient for identifying areas of significantly high endemism that warrant conservation attention. Differences between our findings and those in previous studies appear to mostly reflect the source and scale of distributional data, and recent analytical refinements.


Asunto(s)
Biodiversidad , Plantas/clasificación , Conservación de los Recursos Naturales
18.
Am J Bot ; 103(2): 221-32, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26851267

RESUMEN

PREMISE OF THE STUDY: Hesperolinon (western flax; Linaceae) is endemic to the western United States, where it is notable for its high and geographically concentrated species diversity on serpentine-derived soils and for its use as a model system in disease ecology. We used a phylogenetic framework to test a long-standing hypothesis that Hesperolinon is a neoendemic radiation. METHODS: Five plastid and two ribosomal nuclear DNA gene regions were sampled from 105 populations of Hesperolinon, including all 13 recently recognized species across their known ranges. We used these data to generate population-level phylogenies of Hesperolinon. We also generated a robustly sampled chronogram of Linaceae using an eight-gene, 100-taxon supermatrix calibrated using fossil Linum pollen and a published chronogram of Malpighiales. KEY RESULTS: Most diversification in Hesperolinon has taken place in the past 1-2 million yr, much more recently than previous estimates. Only the earliest-diverging species, H. drymarioides, was resolved as a clade. Denser taxon and gene sampling generally support previously proposed relationships within Linaceae, but with more recent diversification of key clades. CONCLUSIONS: Hesperolinon is an excellent example of edaphic neoendemism, in support of Raven and Axelrod's hypothesis for the genus. Dense population-level sampling reveals a complex of incipient species, with clades poorly aligned with traditional morphological circumscriptions, likely due in part to continued gene flow. The diversification of Linaceae is more recent than previously estimated, and other recent radiations (e.g., Hugonia) warrant further study.


Asunto(s)
Evolución Molecular , Linaceae/genética , Filogenia , Evolución Biológica , California , ADN de Cloroplastos/genética , ADN Ribosómico/genética , Linaceae/fisiología , Datos de Secuencia Molecular , Oregon , Análisis de Secuencia de ADN
19.
Evol Bioinform Online ; 11: 263-6, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26648681

RESUMEN

The amount of phylogenetically informative sequence data in GenBank is growing at an exponential rate, and large phylogenetic trees are increasingly used in research. Tools are needed to construct phylogenetic sequence matrices from GenBank data and evaluate the effect of missing data. Supermatrix Constructor (SUMAC) is a tool to data-mine GenBank, construct phylogenetic supermatrices, and assess the phylogenetic decisiveness of a matrix given the pattern of missing sequence data. SUMAC calculates a novel metric, Missing Sequence Decisiveness Scores (MSDS), which measures how much each individual missing sequence contributes to the decisiveness of the matrix. MSDS can be used to compare supermatrices and prioritize the acquisition of new sequence data. SUMAC constructs supermatrices either through an exploratory clustering of all GenBank sequences within a taxonomic group or by using guide sequences to build homologous clusters in a more targeted manner. SUMAC assembles supermatrices for any taxonomic group recognized in GenBank and is optimized to run on multicore computer systems by parallelizing multiple stages of operation. SUMAC is implemented as a Python package that can run as a stand-alone command-line program, or its modules and objects can be incorporated within other programs. SUMAC is released under the open source GPLv3 license and is available at https://github.com/wf8/sumac.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...