Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 162
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Cell Death Differ ; 31(11): 1395-1397, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39367240
2.
Cell Stem Cell ; 2024 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-39437792

RESUMEN

Senescent neural progenitor cells have been identified in brain lesions of people with progressive multiple sclerosis (PMS). However, their role in disease pathobiology and contribution to the lesion environment remains unclear. By establishing directly induced neural stem/progenitor cell (iNSC) lines from PMS patient fibroblasts, we studied their senescent phenotype in vitro. Senescence was strongly associated with inflammatory signaling, hypermetabolism, and the senescence-associated secretory phenotype (SASP). PMS-derived iNSCs displayed increased glucose-dependent fatty acid and cholesterol synthesis, which resulted in the accumulation of lipid droplets. A 3-hydroxy-3-methylglutaryl (HMG)-coenzyme A (CoA) reductase (HMGCR)-mediated lipogenic state was found to induce a SASP in PMS iNSCs via cholesterol-dependent transcription factors. SASP from PMS iNSC lines induced neurotoxicity in mature neurons, and treatment with the HMGCR inhibitor simvastatin altered the PMS iNSC SASP, promoting cytoprotective qualities and reducing neurotoxicity. Our findings suggest a disease-associated, cholesterol-related, hypermetabolic phenotype of PMS iNSCs that leads to neurotoxic signaling and is rescuable pharmacologically.

4.
Nat Genet ; 56(10): 2144-2157, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39169259

RESUMEN

Oncogenic PIK3CA mutations generate large clones in aging human esophagus. Here we investigate the behavior of Pik3ca mutant clones in the normal esophageal epithelium of transgenic mice. Expression of a heterozygous Pik3caH1047R mutation drives clonal expansion by tilting cell fate toward proliferation. CRISPR screening and inhibitor treatment of primary esophageal keratinocytes confirmed the PI3K-mTOR pathway increased mutant cell competitive fitness. The antidiabetic drug metformin reduced mutant cell advantage in vivo and in vitro. Conversely, metabolic conditions such as type 1 diabetes or diet-induced obesity enhanced the competitive fitness of Pik3caH1047R cells. Consistently, we found a higher density of PIK3CA gain-of-function mutations in the esophagus of individuals with high body mass index compared with those with normal weight. We conclude that the metabolic environment selectively influences the evolution of the normal epithelial mutational landscape. Clinically feasible interventions to even out signaling imbalances between wild-type and mutant cells may limit the expansion of oncogenic mutants in normal tissues.


Asunto(s)
Fosfatidilinositol 3-Quinasa Clase I , Esófago , Ratones Transgénicos , Fosfatidilinositol 3-Quinasa Clase I/genética , Fosfatidilinositol 3-Quinasa Clase I/metabolismo , Animales , Humanos , Ratones , Esófago/metabolismo , Esófago/patología , Mutación , Serina-Treonina Quinasas TOR/metabolismo , Serina-Treonina Quinasas TOR/genética , Proliferación Celular/genética , Transducción de Señal , Metformina/farmacología , Queratinocitos/metabolismo , Obesidad/genética , Obesidad/metabolismo , Femenino , Masculino
5.
Nat Commun ; 15(1): 5386, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38918386

RESUMEN

Aberrantly accumulated metabolites elicit intra- and inter-cellular pro-oncogenic cascades, yet current measurement methods require sample perturbation/disruption and lack spatio-temporal resolution, limiting our ability to fully characterize their function and distribution. Here, we show that Raman spectroscopy (RS) can directly detect fumarate in living cells in vivo and animal tissues ex vivo, and that RS can distinguish between Fumarate hydratase (Fh1)-deficient and Fh1-proficient cells based on fumarate concentration. Moreover, RS reveals the spatial compartmentalization of fumarate within cellular organelles in Fh1-deficient cells: consistent with disruptive methods, we observe the highest fumarate concentration (37 ± 19 mM) in mitochondria, where the TCA cycle operates, followed by the cytoplasm (24 ± 13 mM) and then the nucleus (9 ± 6 mM). Finally, we apply RS to tissues from an inducible mouse model of FH loss in the kidney, demonstrating RS can classify FH status. These results suggest RS could be adopted as a valuable tool for small molecule metabolic imaging, enabling in situ non-destructive evaluation of fumarate compartmentalization.


Asunto(s)
Fumarato Hidratasa , Fumaratos , Espectrometría Raman , Espectrometría Raman/métodos , Animales , Fumaratos/metabolismo , Ratones , Fumarato Hidratasa/metabolismo , Fumarato Hidratasa/genética , Riñón/metabolismo , Mitocondrias/metabolismo , Humanos , Núcleo Celular/metabolismo , Citoplasma/metabolismo
6.
Trends Biochem Sci ; 49(9): 775-790, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38876954

RESUMEN

Mutations in metabolic enzymes are associated with hereditary and sporadic forms of cancer. For example, loss-of-function mutations affecting fumarate hydratase (FH), the tricarboxylic acid (TCA) cycle enzyme, result in the accumulation of millimolar levels of fumarate that cause an aggressive form of kidney cancer. A distinct feature of fumarate is its ability to spontaneously react with thiol groups of cysteines in a chemical reaction termed succination. Although succination of a few proteins has been causally implicated in the molecular features of FH-deficient cancers, the stoichiometry, wider functional consequences, and contribution of succination to disease development remain largely unexplored. We discuss the functional implications of fumarate-induced succination in FH-deficient cells, the available methodologies, and the current challenges in studying this post-translational modification.


Asunto(s)
Cisteína , Fumarato Hidratasa , Fumaratos , Cisteína/metabolismo , Fumaratos/metabolismo , Humanos , Fumarato Hidratasa/metabolismo , Fumarato Hidratasa/genética , Procesamiento Proteico-Postraduccional , Animales
7.
Cell Rep ; 43(6): 114243, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38805398

RESUMEN

Xeroderma pigmentosum (XP) is caused by defective nucleotide excision repair of DNA damage. This results in hypersensitivity to ultraviolet light and increased skin cancer risk, as sunlight-induced photoproducts remain unrepaired. However, many XP patients also display early-onset neurodegeneration, which leads to premature death. The mechanism of neurodegeneration is unknown. Here, we investigate XP neurodegeneration using pluripotent stem cells derived from XP patients and healthy relatives, performing functional multi-omics on samples during neuronal differentiation. We show substantially increased levels of 5',8-cyclopurine and 8-oxopurine in XP neuronal DNA secondary to marked oxidative stress. Furthermore, we find that the endoplasmic reticulum stress response is upregulated and reversal of the mutant genotype is associated with phenotypic rescue. Critically, XP neurons exhibit inappropriate downregulation of the protein clearance ubiquitin-proteasome system (UPS). Chemical enhancement of UPS activity in XP neuronal models improves phenotypes, albeit inadequately. Although more work is required, this study presents insights with intervention potential.


Asunto(s)
Células Madre Pluripotentes Inducidas , Xerodermia Pigmentosa , Xerodermia Pigmentosa/patología , Xerodermia Pigmentosa/metabolismo , Xerodermia Pigmentosa/genética , Células Madre Pluripotentes Inducidas/metabolismo , Humanos , Neuronas/metabolismo , Neuronas/patología , Estrés Oxidativo , Estrés del Retículo Endoplásmico , Complejo de la Endopetidasa Proteasomal/metabolismo , Diferenciación Celular , Daño del ADN , Modelos Biológicos , Multiómica
8.
Cell ; 187(9): 2269-2287.e16, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38608703

RESUMEN

Knudson's "two-hit" paradigm posits that carcinogenesis requires inactivation of both copies of an autosomal tumor suppressor gene. Here, we report that the glycolytic metabolite methylglyoxal (MGO) transiently bypasses Knudson's paradigm by inactivating the breast cancer suppressor protein BRCA2 to elicit a cancer-associated, mutational single-base substitution (SBS) signature in nonmalignant mammary cells or patient-derived organoids. Germline monoallelic BRCA2 mutations predispose to these changes. An analogous SBS signature, again without biallelic BRCA2 inactivation, accompanies MGO accumulation and DNA damage in Kras-driven, Brca2-mutant murine pancreatic cancers and human breast cancers. MGO triggers BRCA2 proteolysis, temporarily disabling BRCA2's tumor suppressive functions in DNA repair and replication, causing functional haploinsufficiency. Intermittent MGO exposure incites episodic SBS mutations without permanent BRCA2 inactivation. Thus, a metabolic mechanism wherein MGO-induced BRCA2 haploinsufficiency transiently bypasses Knudson's two-hit requirement could link glycolysis activation by oncogenes, metabolic disorders, or dietary challenges to mutational signatures implicated in cancer evolution.


Asunto(s)
Proteína BRCA2 , Neoplasias de la Mama , Glucólisis , Piruvaldehído , Animales , Proteína BRCA2/metabolismo , Proteína BRCA2/genética , Ratones , Humanos , Femenino , Piruvaldehído/metabolismo , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Haploinsuficiencia , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patología , Mutación , Daño del ADN , Reparación del ADN , Línea Celular Tumoral
9.
EMBO J ; 43(20): 4444-4450, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38664540
10.
EMBO J ; 43(11): 2127-2165, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38580776

RESUMEN

The in vitro oxygen microenvironment profoundly affects the capacity of cell cultures to model physiological and pathophysiological states. Cell culture is often considered to be hyperoxic, but pericellular oxygen levels, which are affected by oxygen diffusivity and consumption, are rarely reported. Here, we provide evidence that several cell types in culture actually experience local hypoxia, with important implications for cell metabolism and function. We focused initially on adipocytes, as adipose tissue hypoxia is frequently observed in obesity and precedes diminished adipocyte function. Under standard conditions, cultured adipocytes are highly glycolytic and exhibit a transcriptional profile indicative of physiological hypoxia. Increasing pericellular oxygen diverted glucose flux toward mitochondria, lowered HIF1α activity, and resulted in widespread transcriptional rewiring. Functionally, adipocytes increased adipokine secretion and sensitivity to insulin and lipolytic stimuli, recapitulating a healthier adipocyte model. The functional benefits of increasing pericellular oxygen were also observed in macrophages, hPSC-derived hepatocytes and cardiac organoids. Our findings demonstrate that oxygen is limiting in many terminally-differentiated cell types, and that considering pericellular oxygen improves the quality, reproducibility and translatability of culture models.


Asunto(s)
Adipocitos , Diferenciación Celular , Oxígeno , Oxígeno/metabolismo , Adipocitos/metabolismo , Adipocitos/citología , Humanos , Técnicas de Cultivo de Célula/métodos , Animales , Glucólisis , Hepatocitos/metabolismo , Hipoxia de la Célula , Mitocondrias/metabolismo , Ratones , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Células Cultivadas , Glucosa/metabolismo , Macrófagos/metabolismo
11.
EMBO Mol Med ; 16(6): 1379-1403, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38684863

RESUMEN

Polycystic kidney disease (PKD) is a genetic disorder characterized by bilateral cyst formation. We showed that PKD cells and kidneys display metabolic alterations, including the Warburg effect and glutaminolysis, sustained in vitro by the enzyme asparagine synthetase (ASNS). Here, we used antisense oligonucleotides (ASO) against Asns in orthologous and slowly progressive PKD murine models and show that treatment leads to a drastic reduction of total kidney volume (measured by MRI) and a prominent rescue of renal function in the mouse. Mechanistically, the upregulation of an ATF4-ASNS axis in PKD is driven by the amino acid response (AAR) branch of the integrated stress response (ISR). Metabolic profiling of PKD or control kidneys treated with Asns-ASO or Scr-ASO revealed major changes in the mutants, several of which are rescued by Asns silencing in vivo. Indeed, ASNS drives glutamine-dependent de novo pyrimidine synthesis and proliferation in cystic epithelia. Notably, while several metabolic pathways were completely corrected by Asns-ASO, glycolysis was only partially restored. Accordingly, combining the glycolytic inhibitor 2DG with Asns-ASO further improved efficacy. Our studies identify a new therapeutic target and novel metabolic vulnerabilities in PKD.


Asunto(s)
Aspartatoamoníaco Ligasa , Modelos Animales de Enfermedad , Enfermedades Renales Poliquísticas , Animales , Humanos , Ratones , Aspartatoamoníaco Ligasa/metabolismo , Aspartatoamoníaco Ligasa/genética , Aspartatoamoníaco Ligasa/antagonistas & inhibidores , Progresión de la Enfermedad , Riñón/patología , Riñón/metabolismo , Oligonucleótidos Antisentido/farmacología , Oligonucleótidos Antisentido/uso terapéutico , Enfermedades Renales Poliquísticas/metabolismo , Enfermedades Renales Poliquísticas/tratamiento farmacológico , Enfermedades Renales Poliquísticas/patología , Enfermedades Renales Poliquísticas/genética
13.
Nature ; 625(7994): 385-392, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38123683

RESUMEN

Digested dietary fats are taken up by enterocytes where they are assembled into pre-chylomicrons in the endoplasmic reticulum followed by transport to the Golgi for maturation and subsequent secretion to the circulation1. The role of mitochondria in dietary lipid processing is unclear. Here we show that mitochondrial dysfunction in enterocytes inhibits chylomicron production and the transport of dietary lipids to peripheral organs. Mice with specific ablation of the mitochondrial aspartyl-tRNA synthetase DARS2 (ref. 2), the respiratory chain subunit SDHA3 or the assembly factor COX10 (ref. 4) in intestinal epithelial cells showed accumulation of large lipid droplets (LDs) in enterocytes of the proximal small intestine and failed to thrive. Feeding a fat-free diet suppressed the build-up of LDs in DARS2-deficient enterocytes, which shows that the accumulating lipids derive mostly from digested fat. Furthermore, metabolic tracing studies revealed an impaired transport of dietary lipids to peripheral organs in mice lacking DARS2 in intestinal epithelial cells. DARS2 deficiency caused a distinct lack of mature chylomicrons concomitant with a progressive dispersal of the Golgi apparatus in proximal enterocytes. This finding suggests that mitochondrial dysfunction results in impaired trafficking of chylomicrons from the endoplasmic reticulum to the Golgi, which in turn leads to storage of dietary lipids in large cytoplasmic LDs. Taken together, these results reveal a role for mitochondria in dietary lipid transport in enterocytes, which might be relevant for understanding the intestinal defects observed in patients with mitochondrial disorders5.


Asunto(s)
Grasas de la Dieta , Enterocitos , Metabolismo de los Lípidos , Mitocondrias , Animales , Ratones , Aspartato-ARNt Ligasa/metabolismo , Quilomicrones/metabolismo , Grasas de la Dieta/metabolismo , Complejo II de Transporte de Electrones/metabolismo , Retículo Endoplásmico/metabolismo , Enterocitos/metabolismo , Enterocitos/patología , Células Epiteliales/metabolismo , Aparato de Golgi/metabolismo , Intestinos , Gotas Lipídicas/metabolismo , Mitocondrias/metabolismo , Mitocondrias/patología
15.
Neurooncol Adv ; 5(1): vdad120, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37885806

RESUMEN

Background: Branched-chain aminotransferase 1 (BCAT1) has been proposed to drive proliferation and invasion of isocitrate dehydrogenase (IDH) wild-type glioblastoma cells. However, the Cancer Genome Atlas (TCGA) dataset shows considerable variation in the expression of this enzyme in glioblastoma. The aim of this study was to determine the role of BCAT1 in driving the proliferation and invasion of glioblastoma cells and xenografts that have widely differing levels of BCAT1 expression and the mechanism responsible. Methods: The activity of BCAT1 was modulated in IDH wild-type patient-derived glioblastoma cell lines, and in orthotopically implanted tumors derived from these cells, to examine the effects of BCAT1 expression on tumor phenotype. Results: In cells with constitutively high BCAT1 expression and a glycolytic metabolic phenotype, inducible shRNA knockdown of the enzyme resulted in reduced proliferation and invasion by increasing the concentration of α-ketoglutarate, leading to reduced DNA methylation, HIF-1α destabilization, and reduced expression of the transcription factor Forkhead box protein M1 (FOXM1). Conversely, overexpression of the enzyme increased HIF-1α expression and promoted proliferation and invasion. However, in cells with an oxidative phenotype and very low constitutive expression of BCAT1 increased expression of the enzyme had no effect on invasion and reduced cell proliferation. This occurred despite an increase in HIF-1α levels and could be explained by decreased TCA cycle flux. Conclusions: There is a wide variation in BCAT1 expression in glioblastoma and its role in proliferation and invasion is dependent on tumor subtype.

16.
Cell Chem Biol ; 30(9): 1012-1014, 2023 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-37738953

RESUMEN

Metabolic competition within the tumor microenvironment (TME) shapes the efficacy of anticancer immunity. In the August 3rd issue of Nature, Guo et al.1 show that glutamine is an intercellular metabolic checkpoint between cancer and immune cells. Targeting glutamine metabolism in the TME is a promising strategy to improve anti-cancer therapy.


Asunto(s)
Glutamina , Microambiente Tumoral , Células Dendríticas
17.
Science ; 381(6664): 1287-1288, 2023 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-37733861

RESUMEN

Mitochondrial metabolite reduces melanoma growth by boosting antigen presentation.


Asunto(s)
Presentación de Antígeno , Melanoma , Mitocondrias , Humanos , Melanoma/inmunología , Melanoma/patología , Mitocondrias/metabolismo , Carcinogénesis/inmunología , Carcinogénesis/patología
18.
Br J Cancer ; 129(10): 1546-1557, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37689804

RESUMEN

Fumarate hydratase (FH) is an enzyme of the Tricarboxylic Acid (TCA) cycle whose mutations lead to hereditary and sporadic forms of cancer. Although more than twenty years have passed since its discovery as the leading cause of the cancer syndrome Hereditary leiomyomatosis and Renal Cell Carcinoma (HLRCC), it is still unclear how the loss of FH causes cancer in a tissue-specific manner and with such aggressive behaviour. It has been shown that FH loss, via the accumulation of FH substrate fumarate, activates a series of oncogenic cascades whose contribution to transformation is still under investigation. In this review, we will summarise these recent findings in an integrated fashion and put forward the case that understanding the biology of FH and how its mutations promote transformation will be vital to establish novel paradigms of oncometabolism.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Síndromes Neoplásicos Hereditarios , Neoplasias Cutáneas , Neoplasias Uterinas , Femenino , Humanos , Fumarato Hidratasa/genética , Neoplasias Uterinas/genética , Neoplasias Cutáneas/genética , Síndromes Neoplásicos Hereditarios/genética , Carcinoma de Células Renales/genética , Carcinoma de Células Renales/patología , Neoplasias Renales/genética , Neoplasias Renales/patología
19.
Cell Rep ; 42(7): 112751, 2023 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-37405921

RESUMEN

Hereditary leiomyomatosis and renal cell cancer (HLRCC) is a cancer syndrome caused by inactivating germline mutations in fumarate hydratase (FH) and subsequent accumulation of fumarate. Fumarate accumulation leads to profound epigenetic changes and the activation of an anti-oxidant response via nuclear translocation of the transcription factor NRF2. The extent to which chromatin remodeling shapes this anti-oxidant response is currently unknown. Here, we explored the effects of FH loss on the chromatin landscape to identify transcription factor networks involved in the remodeled chromatin landscape of FH-deficient cells. We identify FOXA2 as a key transcription factor that regulates anti-oxidant response genes and subsequent metabolic rewiring cooperating without direct interaction with the anti-oxidant regulator NRF2. The identification of FOXA2 as an anti-oxidant regulator provides additional insights into the molecular mechanisms behind cell responses to fumarate accumulation and potentially provides further avenues for therapeutic intervention for HLRCC.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Leiomiomatosis , Síndromes Neoplásicos Hereditarios , Neoplasias Cutáneas , Neoplasias Uterinas , Femenino , Humanos , Fumarato Hidratasa/genética , Antioxidantes , Factor 2 Relacionado con NF-E2/genética , Leiomiomatosis/genética , Neoplasias Uterinas/genética , Neoplasias Cutáneas/genética , Síndromes Neoplásicos Hereditarios/genética , Cromatina , Neoplasias Renales/genética , Carcinoma de Células Renales/genética , Factor Nuclear 3-beta del Hepatocito/genética
20.
EMBO J ; 42(18): e113190, 2023 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-37492888

RESUMEN

DNA single-strand breaks (SSBs) disrupt DNA replication and induce chromosome breakage. However, whether SSBs induce chromosome breakage when present behind replication forks or ahead of replication forks is unclear. To address this question, we exploited an exquisite sensitivity of SSB repair-defective human cells lacking PARP activity or XRCC1 to the thymidine analogue 5-chloro-2'-deoxyuridine (CldU). We show that incubation with CldU in these cells results in chromosome breakage, sister chromatid exchange, and cytotoxicity by a mechanism that depends on the S phase activity of uracil DNA glycosylase (UNG). Importantly, we show that CldU incorporation in one cell cycle is cytotoxic only during the following cell cycle, when it is present in template DNA. In agreement with this, while UNG induces SSBs both in nascent strands behind replication forks and in template strands ahead of replication forks, only the latter trigger fork collapse and chromosome breakage. Finally, we show that BRCA-defective cells are hypersensitive to CldU, either alone and/or in combination with PARP inhibitor, suggesting that CldU may have clinical utility.


Asunto(s)
Antineoplásicos , Inhibidores de Poli(ADP-Ribosa) Polimerasas , Humanos , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Rotura Cromosómica , Reparación del ADN , Replicación del ADN , ADN , Proteína 1 de Reparación por Escisión del Grupo de Complementación Cruzada de las Lesiones por Rayos X/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...