Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Horm Behav ; 158: 105462, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38000170

RESUMEN

While spiny mice are primarily used as a model for Type II diabetes and for studying complex tissue regeneration, they are also an emerging model for a variety of studies examining hormones, behavior, and the brain. We began studying the spiny mouse to take advantage of their highly gregarious phenotype to examine how the brain facilitates large group-living. However, this unique rodent can be readily bred and maintained in the lab and can be used to ask a wide variety of scientific questions. In this brief communication we provide an overview of studies that have used spiny mice for exploring physiology and behavior. Additionally, we describe how the spiny mouse can serve as a useful model for researchers interested in studying precocial development, menstruation, cooperation, and various grouping behaviors. With increasingly available technological advancements for non-traditional organisms, spiny mice are well-positioned to become a valuable organism in the behavioral neuroscience community.


Asunto(s)
Diabetes Mellitus Tipo 2 , Menstruación , Animales , Femenino , Murinae/fisiología , Conducta Social
3.
Sci Rep ; 13(1): 17040, 2023 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-37813903

RESUMEN

In complex social environments, individuals may interact with not only novel and familiar conspecifics but also kin and non-kin. The ability to distinguish between conspecific identities is crucial for most animals, yet how the brain processes conspecific type and how animals may alter behavior accordingly is not well known. We examined whether the communally breeding spiny mouse (Acomys cahirinus) responds differently to conspecifics that vary in novelty and kinship. In a group interaction test, we found that males can distinguish novel kin from novel non-kin, and preferentially spend time with novel kin over familiar kin and novel non-kin. To determine whether kinship and novelty status are differentially represented in the brain, we conducted immediate early gene tests, which revealed the dorsal, but not ventral, lateral septum differentially processes kinship. Neither region differentially processes social novelty. Further, males did not exhibit differences in prosocial behavior toward novel and familiar conspecifics but exhibited more prosocial behavior with novel kin than novel non-kin. These results suggest that communally breeding species may have evolved specialized neural circuitry to facilitate a bias to be more affiliative with kin, regardless of whether they are novel or familiar, potentially to promote prosocial behaviors, thereby facilitating group cohesion.


Asunto(s)
Conducta Animal , Conducta Social , Animales , Masculino , Conducta Animal/fisiología , Altruismo , Medio Social , Murinae , Encéfalo
4.
Sci Adv ; 9(22): eadf4950, 2023 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-37256960

RESUMEN

A major issue in neuroscience is the poor translatability of research results from preclinical studies in animals to clinical outcomes. Comparative neuroscience can overcome this barrier by studying multiple species to differentiate between species-specific and general mechanisms of neural circuit functioning. Targeted manipulation of neural circuits often depends on genetic dissection, and use of this technique has been restricted to only a few model species, limiting its application in comparative research. However, ongoing advances in genomics make genetic dissection attainable in a growing number of species. To demonstrate the potential of comparative gene editing approaches, we developed a viral-mediated CRISPR/Cas9 strategy that is predicted to target the oxytocin receptor (Oxtr) gene in >80 rodent species. This strategy specifically reduced OXTR levels in all evaluated species (n = 6) without causing gross neuronal toxicity. Thus, we show that CRISPR/Cas9-based tools can function in multiple species simultaneously. Thereby, we hope to encourage comparative gene editing and improve the translatability of neuroscientific research.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Animales , Edición Génica/métodos , Receptores de Oxitocina/genética , Oxitocina/genética
5.
Sci Rep ; 13(1): 4835, 2023 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-36964221

RESUMEN

Studies in prairie voles (Microtus ochrogaster) have shown that although formation of the pair bond is accompanied by a suite of behavioral changes, a bond between two voles can dissolve and individuals can form new pair bonds with other conspecifics. However, the neural mechanisms underlying this behavioral flexibility have not been well-studied. Here we examine plasticity of nonapeptide, vasopressin (VP) and oxytocin (OT), neuronal populations in relation to bonding and the dissolution of bonds. Using adult male and female prairie voles, animals were either pair bonded, co-housed with a same-sex sibling, separated from their pair bond partner, or separated from their sibling. We examined neural densities of VP and OT cell groups and observed plasticity in the nonapeptide populations of the paraventricular nucleus of the hypothalamus (PVN). Voles that were pair bonded had fewer PVN OT neurons, suggesting that PVN OT neural densities decrease with pair bonding, but increase and return to a pre-pair bonded baseline after the dissolution of a pair bond. Our findings suggest that the PVN nonapeptide cell groups are particularly plastic in adulthood, providing a mechanism by which voles can exhibit context-appropriate behavior related to bond status.


Asunto(s)
Oxitocina , Apareamiento , Animales , Masculino , Femenino , Oxitocina/fisiología , Hipotálamo , Núcleo Hipotalámico Paraventricular , Arvicolinae/fisiología , Receptores de Oxitocina
6.
STAR Protoc ; 3(4): 101672, 2022 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-36107743

RESUMEN

Identifying multiple proteins within the same tissue allows for assessing protein colocalization, is cost effective, and maximizes efficiency. Here, we describe a protocol for multiplex immunolabeling of proteins in free-floating rodent brain sections. As opposed to slide-mounted immunohistochemistry, the free-floating approach results in less tissue loss and greater antibody penetration. Using distinct fluorophores for individual proteins, this protocol allows for visualization of three or more proteins within tissue sections. The protocol can be applied to other tissue types. For complete details on the use and execution of this protocol, please refer to Gonzalez Abreu et al. (2022).


Asunto(s)
Anticuerpos , Colorantes Fluorescentes , Inmunohistoquímica , Encéfalo
7.
iScience ; 25(5): 104230, 2022 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-35521530

RESUMEN

We investigated whether nonreproductive social interactions may be rewarding for colonial but not non-colonial species. We found that the colonial spiny mouse (Acomys cahirinus) is significantly more gregarious, more prosocial, and less aggressive than its non-colonial relative, the Mongolian gerbil (Meriones unguiculatus). In an immediate-early gene study, we examined oxytocin (OT) and tyrosine hydroxylase (TH) neural responses to interactions with a novel, same-sex conspecific or a novel object. The paraventricular nucleus of the hypothalamus (PVN) OT cell group was more responsive to interactions with a conspecific compared to a novel object in both species. However, the ventral tegmental area (VTA) TH cell group showed differential responses only in spiny mice. Further, PVN OT and VTA TH neural responses positively correlated in spiny mice, suggesting functional connectivity. These results suggest that colonial species may have evolved neural mechanisms associated with reward in novel, nonreproductive social contexts to promote large group-living.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA