Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 965, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38302480

RESUMEN

Protein misfolding can generate toxic intermediates, which underlies several devastating diseases, such as Alzheimer's disease (AD). The surface of AD-associated amyloid-ß peptide (Aß) fibrils has been suggested to act as a catalyzer for self-replication and generation of potentially toxic species. Specifically tailored molecular chaperones, such as the BRICHOS protein domain, were shown to bind to amyloid fibrils and break this autocatalytic cycle. Here, we identify a site on the Aß42 fibril surface, consisting of three C-terminal ß-strands and particularly the solvent-exposed ß-strand stretching from residues 26-28, which is efficiently sensed by a designed variant of Bri2 BRICHOS. Remarkably, while only a low amount of BRICHOS binds to Aß42 fibrils, fibril-catalyzed nucleation processes are effectively prevented, suggesting that the identified site acts as a catalytic aggregation hotspot, which can specifically be blocked by BRICHOS. Hence, these findings provide an understanding how toxic nucleation events can be targeted by molecular chaperones.


Asunto(s)
Enfermedad de Alzheimer , Amiloide , Humanos , Amiloide/metabolismo , Péptidos beta-Amiloides/metabolismo , Enfermedad de Alzheimer/genética , Dominios Proteicos , Chaperonas Moleculares/metabolismo , Fragmentos de Péptidos/metabolismo
2.
Front Mol Biosci ; 9: 936887, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35775078

RESUMEN

The spidroin N-terminal domain (NT) is responsible for high solubility and pH-dependent assembly of spider silk proteins during storage and fiber formation, respectively. It forms a monomeric five-helix bundle at neutral pH and dimerizes at lowered pH, thereby firmly interconnecting the spidroins. Mechanistic studies with the NTs from major ampullate, minor ampullate, and flagelliform spidroins (MaSp, MiSp, and FlSp) have shown that the pH dependency is conserved between different silk types, although the residues that mediate this process can differ. Here we study the tubuliform spidroin (TuSp) NT from Argiope argentata, which lacks several well conserved residues involved in the dimerization of other NTs. We solve its structure at low pH revealing an antiparallel dimer of two five-α-helix bundles, which contrasts with a previously determined Nephila antipodiana TuSp NT monomer structure. Further, we study a set of mutants and find that the residues participating in the protonation events during dimerization are different from MaSp and MiSp NT. Charge reversal of one of these residues (R117 in TuSp) results in significantly altered electrostatic interactions between monomer subunits. Altogether, the structure and mutant studies suggest that TuSp NT monomers assemble by elimination of intramolecular repulsive charge interactions, which could lead to slight tilting of α-helices.

3.
Int J Mol Sci ; 22(17)2021 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-34502545

RESUMEN

Prion diseases are associated with conformational conversion of cellular prion protein into a misfolded pathogenic form, which resembles many properties of amyloid fibrils. The same prion protein sequence can misfold into different conformations, which are responsible for variations in prion disease phenotypes (prion strains). In this work, we use atomic force microscopy, FTIR spectroscopy and magic-angle spinning NMR to devise structural models of mouse prion protein fibrils prepared in three different denaturing conditions. We find that the fibril core region as well as the structure of its N- and C-terminal parts is almost identical between the three fibrils. In contrast, the central part differs in length of ß-strands and the arrangement of charged residues. We propose that the denaturant ionic strength plays a major role in determining the structure of fibrils obtained in a particular condition by stabilizing fibril core interior-facing glutamic acid residues.


Asunto(s)
Amiloide/metabolismo , Enfermedades por Prión/metabolismo , Proteínas Priónicas/metabolismo , Agregación Patológica de Proteínas/metabolismo , Secuencia de Aminoácidos , Amiloide/química , Animales , Isótopos de Carbono/metabolismo , Espectroscopía de Resonancia Magnética/métodos , Ratones , Microscopía de Fuerza Atómica/métodos , Isótopos de Nitrógeno/metabolismo , Proteínas Priónicas/química , Conformación Proteica , Espectroscopía Infrarroja por Transformada de Fourier/métodos , Relación Estructura-Actividad
4.
Proteins ; 89(5): 588-594, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-32949018

RESUMEN

Lyme disease is the most widespread vector-transmitted disease in North America and Europe, caused by infection with Borrelia burgdorferi sensu lato complex spirochetes. We report the solution NMR structure of the B. burgdorferi outer surface lipoprotein BBP28, a member of the multicopy lipoprotein (mlp) family. The structure comprises a tether peptide, five α-helices and an extended C-terminal loop. The fold is similar to that of Borrelia turicatae outer surface protein BTA121, which is known to bind lipids. These results contribute to the understanding of Lyme disease pathogenesis by revealing the molecular structure of a protein from the widely found mlp family.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/química , Borrelia burgdorferi/metabolismo , Lipoproteínas/química , Secuencia de Aminoácidos , Proteínas de la Membrana Bacteriana Externa/genética , Proteínas de la Membrana Bacteriana Externa/metabolismo , Borrelia/química , Borrelia/metabolismo , Borrelia burgdorferi/química , Clonación Molecular , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Humanos , Lipoproteínas/genética , Lipoproteínas/metabolismo , Enfermedad de Lyme/microbiología , Modelos Moleculares , Resonancia Magnética Nuclear Biomolecular , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Estructura Terciaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido
5.
Pathogens ; 9(10)2020 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-33050189

RESUMEN

BBA03 is a Borrelia burgdorferi outer surface lipoprotein encoded on one of the most conserved plasmids in Borrelia genome, linear plasmid 54 (lp54). Although many of its genes have been identified as contributing or essential for spirochete fitness in vivo, the majority of the proteins encoded on this plasmid have no known function and lack homologs in other organisms. In this paper, we report the solution NMR structure of the B. burgdorferi outer surface lipoprotein BBA03, which is known to provide a competitive advantage to the bacteria during the transmission from tick vector to mammalian host. BBA03 shows structural homology to other outer surface lipoproteins reflecting their genetic and evolutionary relatedness. Analysis of the structure reveals a pore in BBA03, which could potentially bind lipids.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA