Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Biophys J ; 122(13): 2818-2831, 2023 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-37312455

RESUMEN

Inositol 1,4,5-trisphosphate (IP3)-induced Ca2+ signaling is a second messenger system used by almost all eukaryotic cells. Recent research demonstrated randomness of Ca2+ signaling on all structural levels. We compile eight general properties of Ca2+ spiking common to all cell types investigated and suggest a theory of Ca2+ spiking starting from the random behavior of IP3 receptor channel clusters mediating the release of Ca2+ from the endoplasmic reticulum capturing all general properties and pathway-specific behavior. Spike generation begins after the absolute refractory period of the previous spike. According to its hierarchical spreading from initiating channel openings to cell level, we describe it as a first passage process from none to all clusters open while the cell recovers from the inhibition which terminated the previous spike. Our theory reproduces the exponential stimulation response relation of the average interspike interval Tav and its robustness properties, random spike timing with a linear moment relation between Tav and the interspike interval SD and its robustness properties, sensitive dependency of Tav on diffusion properties, and nonoscillatory local dynamics. We explain large cell variability of Tav observed in experiments by variability of channel cluster coupling by Ca2+-induced Ca2+ release, the number of clusters, and IP3 pathway component expression levels. We predict the relation between puff probability and agonist concentration and [IP3] and agonist concentration. Differences of spike behavior between cell types and stimulating agonists are explained by the different types of negative feedback terminating spikes. In summary, the hierarchical random character of spike generation explains all of the identified general properties.


Asunto(s)
Señalización del Calcio , Retículo Endoplásmico , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Retículo Endoplásmico/metabolismo , Retroalimentación , Calcio/metabolismo , Inositol 1,4,5-Trifosfato/metabolismo
2.
Biophys J ; 120(11): 2112-2123, 2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-33887224

RESUMEN

Calcium (Ca2+) is a second messenger assumed to control changes in synaptic strength in the form of both long-term depression and long-term potentiation at Purkinje cell dendritic spine synapses via inositol trisphosphate (IP3)-induced Ca2+ release. These Ca2+ transients happen in response to stimuli from parallel fibers (PFs) from granule cells and climbing fibers (CFs) from the inferior olivary nucleus. These events occur at low numbers of free Ca2+, requiring stochastic single-particle methods when modeling them. We use the stochastic particle simulation program MCell to simulate Ca2+ transients within a three-dimensional Purkinje cell dendritic spine. The model spine includes the endoplasmic reticulum, several Ca2+ transporters, and endogenous buffer molecules. Our simulations successfully reproduce properties of Ca2+ transients in different dynamical situations. We test two different models of the IP3 receptor (IP3R). The model with nonlinear concentration response of binding of activating Ca2+ reproduces experimental results better than the model with linear response because of the filtering of noise. Our results also suggest that Ca2+-dependent inhibition of the IP3R needs to be slow to reproduce experimental results. Simulations suggest the experimentally observed optimal timing window of CF stimuli arises from the relative timing of CF influx of Ca2+ and IP3 production sensitizing IP3R for Ca2+-induced Ca2+ release. We also model ataxia, a loss of fine motor control assumed to be the result of malfunctioning information transmission at the granule to Purkinje cell synapse, resulting in a decrease or loss of Ca2+ transients. Finally, we propose possible ways of recovering Ca2+ transients under ataxia.


Asunto(s)
Calcio , Células de Purkinje , Calcio/metabolismo , Señalización del Calcio , Espinas Dendríticas/metabolismo , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Sinapsis/metabolismo
3.
Chaos ; 28(5): 053117, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29857685

RESUMEN

First-passage times in random walks have a vast number of diverse applications in physics, chemistry, biology, and finance. In general, environmental conditions for a stochastic process are not constant on the time scale of the average first-passage time or control might be applied to reduce noise. We investigate moments of the first-passage time distribution under an exponential transient describing relaxation of environmental conditions. We solve the Laplace-transformed (generalized) master equation analytically using a novel method that is applicable to general state schemes. The first-passage time from one end to the other of a linear chain of states is our application for the solutions. The dependence of its average on the relaxation rate obeys a power law for slow transients. The exponent ν depends on the chain length N like ν=-N/(N+1) to leading order. Slow transients substantially reduce the noise of first-passage times expressed as the coefficient of variation (CV), even if the average first-passage time is much longer than the transient. The CV has a pronounced minimum for some lengths, which we call resonant lengths. These results also suggest a simple and efficient noise control strategy and are closely related to the timing of repetitive excitations, coherence resonance, and information transmission by noisy excitable systems. A resonant number of steps from the inhibited state to the excitation threshold and slow recovery from negative feedback provide optimal timing noise reduction and information transmission.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...