Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nat Ecol Evol ; 4(11): 1495-1501, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32839543

RESUMEN

Structurally complex habitats tend to contain more species and higher total abundances than simple habitats. This ecological paradigm is grounded in first principles: species richness scales with area, and surface area and niche density increase with three-dimensional complexity. Here we present a geometric basis for surface habitats that unifies ecosystems and spatial scales. The theory is framed by fundamental geometric constraints between three structure descriptors-surface height, rugosity and fractal dimension-and explains 98% of surface variation in a structurally complex test system: coral reefs. Then, we show how coral biodiversity metrics (species richness, total abundance and probability of interspecific encounter) vary over the theoretical structure descriptor plane, demonstrating the value of the theory for predicting the consequences of natural and human modifications of surface structure.


Asunto(s)
Antozoos , Ecosistema , Animales , Biodiversidad , Arrecifes de Coral , Peces
2.
Ecol Evol ; 7(6): 1770-1782, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28331587

RESUMEN

Visual 3D reconstruction techniques provide rich ecological and habitat structural information from underwater imagery. However, an unaided swimmer or diver struggles to navigate precisely over larger extents with consistent image overlap needed for visual reconstruction. While underwater robots have demonstrated systematic coverage of areas much larger than the footprint of a single image, access to suitable robotic systems is limited and requires specialized operators. Furthermore, robots are poor at navigating hydrodynamic habitats such as shallow coral reefs. We present a simple approach that constrains the motion of a swimmer using a line unwinding from a fixed central drum. The resulting motion is the involute of a circle, a spiral-like path with constant spacing between revolutions. We test this survey method at a broad range of habitats and hydrodynamic conditions encircling Lizard Island in the Great Barrier Reef, Australia. The approach generates fast, structured, repeatable, and large-extent surveys (~110 m2 in 15 min) that can be performed with two people and are superior to the commonly used "mow the lawn" method. The amount of image overlap is a design parameter, allowing for surveys that can then be reliably used in an automated processing pipeline to generate 3D reconstructions, orthographically projected mosaics, and structural complexity indices. The individual images or full mosaics can also be labeled for benthic diversity and cover estimates. The survey method we present can serve as a standard approach to repeatedly collecting underwater imagery for high-resolution 2D mosaics and 3D reconstructions covering spatial extents much larger than a single image footprint without requiring sophisticated robotic systems or lengthy deployment of visual guides. As such, it opens up cost-effective novel observations to inform studies relating habitat structure to ecological processes and biodiversity at scales and spatial resolutions not readily available previously.

4.
Sci Data ; 2: 150057, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26528396

RESUMEN

This Australian benthic data set (BENTHOZ-2015) consists of an expert-annotated set of georeferenced benthic images and associated sensor data, captured by an autonomous underwater vehicle (AUV) around Australia. This type of data is of interest to marine scientists studying benthic habitats and organisms. AUVs collect georeferenced images over an area with consistent illumination and altitude, and make it possible to generate broad scale, photo-realistic 3D maps. Marine scientists then typically spend several minutes on each of thousands of images, labeling substratum type and biota at a subset of points. Labels from four Australian research groups were combined using the CATAMI classification scheme, a hierarchical classification scheme based on taxonomy and morphology for scoring marine imagery. This data set consists of 407,968 expert labeled points from around the Australian coast, with associated images, geolocation and other sensor data. The robotic surveys that collected this data form part of Australia's Integrated Marine Observing System (IMOS) ongoing benthic monitoring program. There is reuse potential in marine science, robotics, and computer vision research.


Asunto(s)
Organismos Acuáticos , Animales , Australia , Biota , Monitoreo del Ambiente , Imagenología Tridimensional , Océano Índico , Océano Pacífico
5.
PLoS One ; 7(12): e50440, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23251370

RESUMEN

This paper demonstrates how multi-scale measures of rugosity, slope and aspect can be derived from fine-scale bathymetric reconstructions created from geo-referenced stereo imagery. We generate three-dimensional reconstructions over large spatial scales using data collected by Autonomous Underwater Vehicles (AUVs), Remotely Operated Vehicles (ROVs), manned submersibles and diver-held imaging systems. We propose a new method for calculating rugosity in a Delaunay triangulated surface mesh by projecting areas onto the plane of best fit using Principal Component Analysis (PCA). Slope and aspect can be calculated with very little extra effort, and fitting a plane serves to decouple rugosity from slope. We compare the results of the virtual terrain complexity calculations with experimental results using conventional in-situ measurement methods. We show that performing calculations over a digital terrain reconstruction is more flexible, robust and easily repeatable. In addition, the method is non-contact and provides much less environmental impact compared to traditional survey techniques. For diver-based surveys, the time underwater needed to collect rugosity data is significantly reduced and, being a technique based on images, it is possible to use robotic platforms that can operate beyond diver depths. Measurements can be calculated exhaustively at multiple scales for surveys with tens of thousands of images covering thousands of square metres. The technique is demonstrated on data gathered by a diver-rig and an AUV, on small single-transect surveys and on a larger, dense survey that covers over [Formula: see text]. Stereo images provide 3D structure as well as visual appearance, which could potentially feed into automated classification techniques. Our multi-scale rugosity, slope and aspect measures have already been adopted in a number of marine science studies. This paper presents a detailed description of the method and thoroughly validates it against traditional in-situ measurements.


Asunto(s)
Procesamiento de Imagen Asistido por Computador/métodos , Imagenología Tridimensional/métodos , Oceanografía/métodos , Océanos y Mares , Análisis de Componente Principal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...