Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 147
Filtrar
1.
JAMA Netw Open ; 7(7): e2420842, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38985473

RESUMEN

Importance: Etiologic diagnoses for rare diseases can involve a diagnostic odyssey, with repeated health care interactions and inconclusive diagnostics. Prior studies reported cost savings associated with genome-wide sequencing (GWS) compared with cytogenetic or molecular testing through rapid genetic diagnosis, but there is limited evidence on whether diagnosis from GWS is associated with reduced health care costs. Objective: To measure changes in health care costs after diagnosis from GWS for Canadian and English children with suspected rare diseases. Design, Setting, and Participants: This cohort study was a quasiexperimental retrospective analysis across 3 distinct English and Canadian cohorts, completed in 2023. Mixed-effects generalized linear regression was used to estimate associations between GWS and costs in the 2 years before and after GWS. Difference-in-differences regression was used to estimate associations of genetic diagnosis and costs. Costs are in 2019 US dollars. GWS was conducted in a research setting (Genomics England 100 000 Genomes Project [100KGP] and Clinical Assessment of the Utility of Sequencing and Evaluation as a Service [CAUSES] Research Clinic) or clinical outpatient setting (publicly reimbursed GWS in British Columbia [BC], Canada). Participants were children with developmental disorders, seizure disorders, or both undergoing GWS between 2014 and 2019. Data were analyzed from April 2021 to September 2023. Exposures: GWS and genetic diagnosis. Main Outcomes and Measures: Annual health care costs and diagnostic costs per child. Results: Study cohorts included 7775 patients in 100KGP, among whom 788 children had epilepsy (mean [SD] age at GWS, 11.6 [11.1] years; 400 female [50.8%]) and 6987 children had an intellectual disability (mean [SD] age at GWS, 8.2 [8.4] years; 2750 female [39.4%]); 77 patients in CAUSES (mean [SD] age at GWS, 8.5 [4.4] years; 33 female [42.9%]); and 118 publicly reimbursed GWS recipients from BC (mean [SD] age at GWS, 5.5 [5.2] years; 58 female [49.2%]). GWS diagnostic yield was 143 children (18.1%) for those with epilepsy and 1323 children (18.9%) for those with an intellectual disability in 100KGP, 47 children (39.8%) in the BC publicly reimbursed setting, and 42 children (54.5%) in CAUSES. Mean annual per-patient spending over the study period was $5283 (95% CI, $5121-$5427) for epilepsy and $3373 (95% CI, $3322-$3424) for intellectual disability in the 100KGP, $724 (95% CI, $563-$886) in CAUSES, and $1573 (95% CI, $1372-$1773) in the BC reimbursed setting. Receiving a genetic diagnosis from GWS was not associated with changed costs in any cohort. Conclusions and Relevance: In this study, receiving a genetic diagnosis was not associated with cost savings. This finding suggests that patient benefit and cost-effectiveness should instead drive GWS implementation.


Asunto(s)
Costos de la Atención en Salud , Enfermedades Raras , Humanos , Enfermedades Raras/genética , Enfermedades Raras/economía , Enfermedades Raras/diagnóstico , Niño , Femenino , Masculino , Costos de la Atención en Salud/estadística & datos numéricos , Canadá , Estudios Retrospectivos , Inglaterra/epidemiología , Preescolar , Secuenciación Completa del Genoma/economía , Secuenciación Completa del Genoma/métodos , Adolescente , Estudios de Cohortes
2.
medRxiv ; 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38947075

RESUMEN

With the increasing availability of long-read sequencing data, high-quality human genome assemblies, and software for fully characterizing tandem repeats, genome-wide genotyping of tandem repeat loci on a population scale becomes more feasible. Such efforts not only expand our knowledge of the tandem repeat landscape in the human genome but also enhance our ability to differentiate pathogenic tandem repeat mutations from benign polymorphisms. To this end, we analyzed 272 genomes assembled using datasets from three public initiatives that employed different long-read sequencing technologies. Here, we report a catalog of over 18 million tandem repeat loci, many of which were previously unannotated. Some of these loci are highly polymorphic, and many of them reside within coding sequences.

3.
Genet Med ; 26(9): 101173, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38828700

RESUMEN

PURPOSE: We evaluated DECIDE, an online pretest decision-support tool for diagnostic genomic testing, in nongenetics specialty clinics where there are no genetic counselors (GCs). METHODS: Families of children offered genomic testing were eligible to participate. Fifty-six parents/guardians completed DECIDE at home, at their convenience. DECIDE includes an integrated knowledge quiz and decisional conflict screen. Six months later, parents were offered follow-up questionnaires and interviews about their experiences. RESULTS: Forty parents (71%) had sufficient knowledge and no decisional conflict surrounding their testing decision, but 6 of this group had residual questions. These 6, plus 16 with decisional conflict or insufficient knowledge, saw a GC. At follow-up, little-to-no decisional regret and few negative emotions were identified in any parents. Most chose testing and described their decision as easy, yet stressful, and described many motivations for sequencing. Parents appreciated the simple comprehensive information DECIDE provided and the ability to view it in a low-stress environment. CONCLUSION: DECIDE provides adequate decision-support to enable most parents to make value-consistent choices about genetic testing for their child. Parents reported that DECIDE helped to clarify motivations for pursuing (or declining) testing. DECIDE is a timely, well-tested, and accessible tool in clinical settings without GCs.

4.
Nat Rev Genet ; 25(7): 476-499, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38467784

RESUMEN

Short tandem repeats (STRs) are a class of repetitive elements, composed of tandem arrays of 1-6 base pair sequence motifs, that comprise a substantial fraction of the human genome. STR expansions can cause a wide range of neurological and neuromuscular conditions, known as repeat expansion disorders, whose age of onset, severity, penetrance and/or clinical phenotype are influenced by the length of the repeats and their sequence composition. The presence of non-canonical motifs, depending on the type, frequency and position within the repeat tract, can alter clinical outcomes by modifying somatic and intergenerational repeat stability, gene expression and mutant transcript-mediated and/or protein-mediated toxicities. Here, we review the diverse structural conformations of repeat expansions, technological advances for the characterization of changes in sequence composition, their clinical correlations and the impact on disease mechanisms.


Asunto(s)
Repeticiones de Microsatélite , Humanos , Repeticiones de Microsatélite/genética , Expansión de las Repeticiones de ADN/genética , Genoma Humano
6.
Genet Med ; 26(4): 101069, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38205742

RESUMEN

PURPOSE: To determine real-world diagnostic rates, cost trajectories, and cost-effectiveness of exome sequencing (ES) and genome sequencing (GS) for children with developmental and/or seizure disorders in British Columbia, Canada. METHODS: Based on medical records review, we estimated real-world costs and outcomes for 491 patients who underwent standard of care (SOC) diagnostic testing at British Columbia Children's Hospital. Results informed a state-transition Markov model examining cost-effectiveness of 3 competing diagnostic strategies: (1) SOC with last-tier access to ES, (2) streamlined ES access, and (3) first-tier GS. RESULTS: Through SOC, 49.4% (95% CI: 40.6, 58.2) of patients were diagnosed at an average cost of C$11,683 per patient (95% CI: 9200, 14,166). Compared with SOC, earlier ES or GS access yielded similar or improved diagnostic rates and shorter times to genetic diagnosis, with 94% of simulations demonstrating cost savings for streamlined ES and 60% for first-tier GS. Net benefit from the perspective of the health care system was C$2956 (95% CI: -608, 6519) for streamlined ES compared with SOC. CONCLUSION: Using real-world data, we found earlier access to ES may yield more rapid genetic diagnosis of childhood developmental and seizure disorders and cost savings compared with current practice in a Canadian health care system.


Asunto(s)
Epilepsia , Niño , Humanos , Análisis Costo-Beneficio , Secuenciación del Exoma , Colombia Británica , Mapeo Cromosómico
7.
Genet Med ; 26(2): 101033, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38007624

RESUMEN

This white paper was prepared by the Global Alliance for Genomics and Health Regulatory and Ethics Work Stream's Pediatric Task Team to review and provide perspective with respect to ethical, legal, and social issues regarding the return of secondary pharmacogenomic variants in children who have a serious disease or developmental disorder and are undergoing exome or genome sequencing to identify a genetic cause of their condition. We discuss actively searching for and reporting pharmacogenetic/genomic variants in pediatric patients, different methods of returning secondary pharmacogenomic findings to the patient/parents and/or treating clinicians, maintaining these data in the patient's health record over time, decision supports to assist using pharmacogenetic results in future treatment decisions, and sharing information in public databases to improve the clinical interpretation of pharmacogenetic variants identified in other children. We conclude by presenting a series of points to consider for clinicians and policymakers regarding whether, and under what circumstances, routine screening and return of pharmacogenomic variants unrelated to the indications for testing is appropriate in children who are undergoing genome-wide sequencing to assist in the diagnosis of a suspected genetic disease.


Asunto(s)
Farmacogenética , Variantes Farmacogenómicas , Humanos , Niño , Genómica , Mapeo Cromosómico , Exoma
8.
Curr Oncol ; 30(8): 7241-7251, 2023 07 29.
Artículo en Inglés | MEDLINE | ID: mdl-37623006

RESUMEN

Over the last decade, utilization of clinical genetics services has grown rapidly, putting increasing pressure on the workforce available to deliver genetic healthcare. To highlight the policy challenges facing Canadian health systems, a needs-based workforce requirements model was developed to determine the number of Canadian patients in 2030 for whom an assessment of hereditary cancer risk would be indicated according to current standards and the numbers of genetic counsellors, clinical geneticists and other physicians with expertise in genetics needed to provide care under a diverse set of scenarios. Our model projects that by 2030, a total of 90 specialist physicians and 326 genetic counsellors (1.7-fold and 1.6-fold increases from 2020, respectively) will be required to provide Canadians with indicated hereditary cancer services if current growth trends and care models remain unchanged. However, if the expansion in eligibility for hereditary cancer assessment accelerates, the need for healthcare providers with expertise in genetics would increase dramatically unless alternative care models are widely adopted. Increasing capacity through service delivery innovation, as well as mainstreaming of cancer genetics care, will be critical to Canadian health systems' ability to meet this challenge.


Asunto(s)
Predisposición Genética a la Enfermedad , Neoplasias , Humanos , Canadá , Derivación y Consulta , Recursos Humanos
9.
10.
J Telemed Telecare ; 29(4): 318-327, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-33470133

RESUMEN

INTRODUCTION: Genome-wide sequencing (exome or whole genome) is transforming the care and management of paediatric patients with a rare disease because of its diagnostic capabilities. Genome-wide sequencing is most effective when both parents and the child are sequenced as a trio. Genetic counselling is recommended for all families considering genome-wide sequencing. Although telehealth is well established in genetic counselling for hereditary cancer and prenatal genetics, its use with genome-wide sequencing has not been well studied. The CAUSES Clinic at BC Children's and Women's Hospitals was a translational paediatric trio-based genome-wide sequencing initiative. Pre-test genetic counselling via telehealth (at a clinical site near the family's residence) was offered to families who had been previously evaluated by a clinical geneticist. We report on the first 300 families seen in the CAUSES clinic and compare health services implementation issues of families seen via telehealth versus on-site. METHODS: Demographics, cost to families (travel and time), time to first appointment, complete trio sample accrual and diagnostic rates were studied. RESULTS: Of the 300 patients, 58 (19%) were seen via telehealth and 242 (81%) were seen on-site for pre-test counselling. The mean time to completion of accrual of trio samples in the telehealth group was 56.3 (standard deviation ±87.3) days versus 18.9 (standard deviation ±62.4) days in the onsite group (p < 2.2 × 10-16). The mean per-family estimated actual or potential travel/time cost savings were greater in the telehealth group (Can$987; standard deviation = Can$1151) than for those seen on-site (Can$305; standard deviation = Can$589) (p = 0.0004). CONCLUSIONS: Telehealth allowed for access to genome-wide sequencing for families in remote communities and for them to avoid significant travel and time costs; however, there was a significant delay to accrual of the complete trio samples in the telehealth group, impacting on time of result reporting and delaying diagnoses for families for whom genome-wide sequencing was diagnostic.


Asunto(s)
Servicios de Salud , Telemedicina , Embarazo , Niño , Humanos , Femenino , Instituciones de Atención Ambulatoria , Ahorro de Costo , Hospitales
11.
Genet Med ; 25(2): 100324, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36565307

RESUMEN

PURPOSE: People with pre-existing conditions may be more susceptible to severe COVID-19 when infected by SARS-CoV-2. The relative risk and severity of SARS-CoV-2 infection in people with rare diseases such as neurofibromatosis type 1 (NF1), neurofibromatosis type 2 (NF2), or schwannomatosis (SWN) is unknown. METHODS: We investigated the proportions of people with NF1, NF2, or SWN in the National COVID Cohort Collaborative (N3C) electronic health record data set who had a positive test result for SARS-CoV-2 or COVID-19. RESULTS: The cohort sizes in N3C were 2501 (NF1), 665 (NF2), and 762 (SWN). We compared these with N3C cohorts of patients with other rare diseases (98-9844 individuals) and the general non-NF population of 5.6 million. The site- and age-adjusted proportion of people with NF1, NF2, or SWN who had a positive test result for SARS-CoV-2 or COVID-19 (collectively termed positive cases) was not significantly higher than in individuals without NF or other selected rare diseases. There were no severe outcomes reported in the NF2 or SWN cohorts. The proportion of patients experiencing severe outcomes was no greater for people with NF1 than in cohorts with other rare diseases or the general population. CONCLUSION: Having NF1, NF2, or SWN does not appear to increase the risk of being SARS-CoV-2 positive or of being a patient with COVID-19 or of developing severe complications from SARS-CoV-2.


Asunto(s)
COVID-19 , Neurofibromatosis , Neurofibromatosis 1 , Neurofibromatosis 2 , Humanos , Neurofibromatosis 2/complicaciones , Neurofibromatosis 2/epidemiología , Neurofibromatosis 1/complicaciones , Neurofibromatosis 1/epidemiología , Enfermedades Raras , COVID-19/complicaciones , SARS-CoV-2 , Neurofibromatosis/complicaciones , Neurofibromatosis/epidemiología
12.
Genome Med ; 14(1): 84, 2022 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-35948990

RESUMEN

BACKGROUND: Expansions of short tandem repeats are the cause of many neurogenetic disorders including familial amyotrophic lateral sclerosis, Huntington disease, and many others. Multiple methods have been recently developed that can identify repeat expansions in whole genome or exome sequencing data. Despite the widely recognized need for visual assessment of variant calls in clinical settings, current computational tools lack the ability to produce such visualizations for repeat expansions. Expanded repeats are difficult to visualize because they correspond to large insertions relative to the reference genome and involve many misaligning and ambiguously aligning reads. RESULTS: We implemented REViewer, a computational method for visualization of sequencing data in genomic regions containing long repeat expansions and FlipBook, a companion image viewer designed for manual curation of large collections of REViewer images. To generate a read pileup, REViewer reconstructs local haplotype sequences and distributes reads to these haplotypes in a way that is most consistent with the fragment lengths and evenness of read coverage. To create appropriate training materials for onboarding new users, we performed a concordance study involving 12 scientists involved in short tandem repeat research. We used the results of this study to create a user guide that describes the basic principles of using REViewer as well as a guide to the typical features of read pileups that correspond to low confidence repeat genotype calls. Additionally, we demonstrated that REViewer can be used to annotate clinically relevant repeat interruptions by comparing visual assessment results of 44 FMR1 repeat alleles with the results of triplet repeat primed PCR. For 38 of these alleles, the results of visual assessment were consistent with triplet repeat primed PCR. CONCLUSIONS: Read pileup plots generated by REViewer offer an intuitive way to visualize sequencing data in regions containing long repeat expansions. Laboratories can use REViewer and FlipBook to assess the quality of repeat genotype calls as well as to visually detect interruptions or other imperfections in the repeat sequence and the surrounding flanking regions. REViewer and FlipBook are available under open-source licenses at https://github.com/illumina/REViewer and https://github.com/broadinstitute/flipbook respectively.


Asunto(s)
Esclerosis Amiotrófica Lateral , Secuencias Repetidas en Tándem , Alelos , Esclerosis Amiotrófica Lateral/genética , Exoma , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Haplotipos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos
13.
Front Genet ; 13: 865400, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35860465

RESUMEN

Population-based newborn screening (NBS) is among the most effective public health programs ever launched, improving health outcomes for newborns who screen positive worldwide through early detection and clinical intervention for genetic disorders discovered in the earliest hours of life. Key to the success of newborn screening programs has been near universal accessibility and participation. Interest has been building to expand newborn screening programs to also include many rare genetic diseases that can now be identified by exome or genome sequencing (ES/GS). Significant declines in sequencing costs as well as improvements to sequencing technologies have enabled researchers to elucidate novel gene-disease associations that motivate possible expansion of newborn screening programs. In this paper we consider recommendations from professional genetic societies in Europe and North America in light of scientific advances in ES/GS and our current understanding of the limitations of ES/GS approaches in the NBS context. We invoke the principle of proportionality-that benefits clearly outweigh associated risks-and the human right to benefit from science to argue that rigorous evidence is still needed for ES/GS that demonstrates clinical utility, accurate genomic variant interpretation, cost effectiveness and universal accessibility of testing and necessary follow-up care and treatment. Confirmatory or second-tier testing using ES/GS may be appropriate as an adjunct to conventional newborn screening in some circumstances. Such cases could serve as important testbeds from which to gather data on relevant programmatic barriers and facilitators to wider ES/GS implementation.

14.
Sci Rep ; 12(1): 9352, 2022 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-35672336

RESUMEN

Detection of short tandem repeat (STR) expansions with standard short-read sequencing is challenging due to the difficulty in mapping multicopy repeat sequences. In this study, we explored how the long-range sequence information of barcode linked-read sequencing (BLRS) can be leveraged to improve repeat-read detection. We also devised a novel algorithm using BLRS barcodes for distance estimation and evaluated its application for STR genotyping. Both approaches were designed for genotyping large expansions (> 1 kb) that cannot be sized accurately by existing methods. Using simulated and experimental data of genomes with STR expansions from multiple BLRS platforms, we validated the utility of barcode and phasing information in attaining better STR genotypes compared to standard short-read sequencing. Although the coverage bias of extremely GC-rich STRs is an important limitation of BLRS, BLRS is an effective strategy for genotyping many other STR loci.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento , Repeticiones de Microsatélite , Algoritmos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Repeticiones de Microsatélite/genética , Análisis de Secuencia de ADN/métodos
15.
Genet Med ; 24(9): 1967-1977, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35674741

RESUMEN

PURPOSE: Neurofibromatosis type 2 (NF2) and schwannomatosis (SWN) are genetically distinct tumor predisposition syndromes with overlapping phenotypes. We sought to update the diagnostic criteria for NF2 and SWN by incorporating recent advances in genetics, ophthalmology, neuropathology, and neuroimaging. METHODS: We used a multistep process, beginning with a Delphi method involving global disease experts and subsequently involving non-neurofibromatosis clinical experts, patients, and foundations/patient advocacy groups. RESULTS: We reached consensus on the minimal clinical and genetic criteria for diagnosing NF2 and SWN. These criteria incorporate mosaic forms of these conditions. In addition, we recommend updated nomenclature for these disorders to emphasize their phenotypic overlap and to minimize misdiagnosis with neurofibromatosis type 1. CONCLUSION: The updated criteria for NF2 and SWN incorporate clinical features and genetic testing, with a focus on using molecular data to differentiate the 2 conditions. It is likely that continued refinement of these new criteria will be necessary as investigators study the diagnostic properties of the revised criteria and identify new genes associated with SWN. In the revised nomenclature, the term "neurofibromatosis 2" has been retired to improve diagnostic specificity.


Asunto(s)
Neurilemoma , Neurofibromatosis , Neurofibromatosis 1 , Neurofibromatosis 2 , Neoplasias Cutáneas , Consenso , Humanos , Neurilemoma/diagnóstico , Neurilemoma/genética , Neurilemoma/patología , Neurofibromatosis/diagnóstico , Neurofibromatosis/genética , Neurofibromatosis 1/genética , Neurofibromatosis 2/diagnóstico , Neurofibromatosis 2/genética , Neoplasias Cutáneas/genética
16.
Genet Med ; 24(8): 1675-1683, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35622065

RESUMEN

PURPOSE: This study aimed to compare downstream utilization of medical services among critically ill infants admitted to intensive care units who received rapid exome sequencing (ES) and those who followed alternative diagnostic testing pathways. METHODS: Using propensity score-weighted regression models including sex, age at admission, and severity indicators, we compared a group of 47 infants who underwent rapid ES with a group of 211 infants who did not receive rapid ES. Utilization and cost indicators were compared between cohorts using negative binomial models for utilization and two-part models for costs. RESULTS: After controlling for patients' sociodemographic and clinical characteristics, we found no statistically significant difference in outpatient visits, hospitalizations, intensive care unit or total length of stay, or length of stay-associated costs between the cohorts at 12- or 26-month follow-up. Similarly, there was no evidence of higher utilization or costs by the ES group when infants who died were removed from the analysis. CONCLUSION: When examining utilization during and beyond the diagnostic trajectory, there is no evidence that ES changes frequency of outpatient visits or use of in-hospital resources in critically ill infants with suspected genetic disorders.


Asunto(s)
Enfermedad Crítica , Exoma , Humanos , Lactante , Unidades de Cuidados Intensivos , Aceptación de la Atención de Salud , Secuenciación del Exoma
17.
Orphanet J Rare Dis ; 17(1): 115, 2022 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-35248131

RESUMEN

BACKGROUND: Neurofibromatosis 1 (NF1) is a rare autosomal dominant disease characterized by increased Schwann cell proliferation in peripheral nerves. Several small studies of brain morphology in children with NF1 have found increased total brain volume, total white matter volume and/or corpus callosum area. Some studies (mostly in children with NF1) also attempted to correlate changes in brain morphology and volume with cognitive or behavioural abnormalities, although the findings were inconsistent. We aimed to characterize alterations in brain volumes by three-dimensional (3D) MRI in adults with NF1 in major intracranial sub-regions. We also aimed to assess the effect of age on these volumes and correlated brain white matter and grey matter volumes with neuropsychometric findings in adults with NF1. METHODS: We obtained brain volume measurements using 3D magnetic resonance imaging for 351 adults with NF1 and, as a comparison group, 43 adults with neurofibromatosis 2 (NF2) or Schwannomatosis. We assessed a subset of 19 adults with NF1 for clinical severity of NF1 features and neurological problems and conducted psychometric testing for attention deficiencies and intelligence quotient. We compared brain volumes between NF1 patients and controls and correlated volumetric measurements to clinical and psychometric features in the NF1 patients. RESULTS: Total brain volume and total and regional white matter volumes were all significantly increased in adults with NF1. Grey matter volume decreased faster with age in adults with NF1 than in controls. Greater total brain volume and white matter volume were correlated with lower attention deficits and higher intelligence quotients in adults with NF1. CONCLUSION: Our findings are consistent with the hypothesis that dysregulation of brain myelin production is a cardinal manifestation of NF1 and that these white matter changes may be functionally important in affected adults.


Asunto(s)
Neurofibromatosis 1 , Sustancia Blanca , Adulto , Encéfalo/patología , Niño , Cuerpo Calloso/patología , Humanos , Imagen por Resonancia Magnética , Neurofibromatosis 1/patología , Sustancia Blanca/patología
18.
Eur J Hum Genet ; 30(5): 496-504, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35031678

RESUMEN

Driven by technological and scientific advances, the landscape of genetic medicine is rapidly changing, which complicates strategic planning and decision-making in this area. To address this uncertainty, we sought to understand genetic professionals' opinions about the future of clinical genetic and genomic services in Canada. We used the Delphi method to survey Canadian genetic professionals about their perspectives on whether scenarios about changes in service delivery and the use of genomic testing would be broadly implemented in their jurisdiction by 2030. We conducted two survey rounds; the response rates were 32% (27/84) and 67% (18/27), respectively. The most likely scenario was the universal use of noninvasive prenatal screening. The least likely scenarios involved population-based genome-wide sequencing for unaffected individuals. Overall, the scenarios perceived as most likely were those that have existing evidence about their benefit and potential medical necessity, whereas scenarios were seen as unlikely if they involved emerging technologies. Participants expected that the need for genetic healthcare services would increase by 2030 owing to changes in clinical guidelines and increased use of genome-wide sequencing. This study highlights the uncertainty in the future of genetic and genomic service provision and contributes evidence that could be used to inform strategic planning in clinical genetics.


Asunto(s)
Técnica Delphi , Canadá , Femenino , Humanos , Embarazo , Encuestas y Cuestionarios
19.
Mol Genet Metab ; 137(4): 399-419, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34872807

RESUMEN

Cerebral palsy (CP) is a debilitating condition characterized by abnormal movement or posture, beginning early in development. Early family and twin studies and more recent genomic investigations clearly demonstrate that genetic factors of major effect contribute to the etiology of CP. Most copy number variants and small alterations of nucleotide sequence that cause CP arise as a result of de novo mutations, so studies that estimate heritability on basis of recurrence frequency within families substantially underestimate genetic contributions to the etiology. At least 4% of patients with typical CP have disease-causing CNVs, and at least 14% have disease-causing single nucleotide variants or indels. The rate of pathogenic genomic lesions is probably more than twice as high among patients who have atypical CP, i.e., neuromotor dysfunction with additional neurodevelopmental abnormalities or malformations, or with MRI findings and medical history that are not characteristic of a perinatal insult. Mutations of many different genetic loci can produce a CP-like phenotype. The importance of genetic variants of minor effect and of epigenetic modifications in producing a multifactorial predisposition to CP is less clear. Recognizing the specific cause of CP in an affected individual is essential to providing optimal clinical management. An etiological diagnosis provides families an "enhanced compass" that improves overall well-being, facilitates access to educational and social services, permits accurate genetic counseling, and, for a subset of patients such as those with underlying inherited metabolic disorders, may make precision therapy that targets the pathophysiology available. Trio exome sequencing with assessment of copy number or trio genome sequencing with bioinformatics analysis for single nucleotide variants, indels, and copy number variants is clinically indicated in the initial workup of CP patients, especially those with additional malformations or neurodevelopmental abnormalities.


Asunto(s)
Parálisis Cerebral , Embarazo , Femenino , Humanos , Parálisis Cerebral/genética , Parálisis Cerebral/diagnóstico , Variaciones en el Número de Copia de ADN/genética , Mutación , Secuenciación del Exoma , Nucleótidos
20.
PEC Innov ; 1: 100039, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37213729

RESUMEN

Objective: To develop and evaluate a personalizable genomic results e-booklet that helps families understand their genomic testing results and navigate available resources. Methods: The need for the Genomics Results e-Booklet was identified by families, after which this tool was developed by a team of clinical researchers and three parent-advisors. We customized the genomic results e-booklet for 50 families participating in a genomic sequencing research study. We conducted an assessment using a 19-question survey and semi-structured interviews to elicit feedback and iteratively improve the tool. Results: 25 users provided feedback via questionnaires and seven respondents were interviewed. Genomic Results e-Booklet recipients responded favorably: 96% of participants stated that it helped them remember information shared during their results appointment, 80% said it had or would help them communicate their results with other healthcare providers, 68% felt that it helped to identify and guide their next steps, and 72% anticipated that the e-booklet would have future utility. Conclusion: The Genomic Results e-Booklet is a patient and family-oriented resource that complements post-test genetic counselling. Innovation: Compared to traditional laboratory reports and clinical letters, the Genomics Results e-Booklet is patient-conceived and patient-centered, and allows clinicians to efficiently personalize content and prioritize patient understanding and support.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...