Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Biosci Rep ; 44(3)2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38465463

RESUMEN

Parathyroid hormone (PTH) and fibroblast growth factor-23 (FGF23) control extracellular phosphate levels by regulating renal NPT2A-mediated phosphate transport by a process requiring the PDZ scaffold protein NHERF1. NHERF1 possesses two PDZ domains, PDZ1 and PDZ2, with identical core-binding GYGF motifs explicitly recognizing distinct binding partners that play different and specific roles in hormone-regulated phosphate transport. The interaction of PDZ1 and the carboxy-terminal PDZ-binding motif of NPT2A (C-TRL) is required for basal phosphate transport. PDZ2 is a regulatory domain that scaffolds multiple biological targets, including kinases and phosphatases involved in FGF23 and PTH signaling. FGF23 and PTH trigger disassembly of the NHERF1-NPT2A complex through reversible hormone-stimulated phosphorylation with ensuing NPT2A sequestration, down-regulation, and cessation of phosphate absorption. In the absence of NHERF1-NPT2A interaction, inhibition of FGF23 or PTH signaling results in disordered phosphate homeostasis and phosphate wasting. Additional studies are crucial to elucidate how NHERF1 spatiotemporally coordinates cellular partners to regulate extracellular phosphate levels.


Asunto(s)
Hormona Paratiroidea , Intercambiadores de Sodio-Hidrógeno , Intercambiadores de Sodio-Hidrógeno/química , Intercambiadores de Sodio-Hidrógeno/metabolismo , Transporte Iónico , Hormona Paratiroidea/metabolismo , Transporte Biológico , Fosfatos/metabolismo , Fosfoproteínas/metabolismo
2.
medRxiv ; 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38496593

RESUMEN

Background: Genome-wide association studies (GWAS) have identified numerous genetic loci associated with mineral metabolism (MM) markers but have exclusively focused on single-trait analysis. In this study, we performed a multi-trait analysis of GWAS (MTAG) of MM, exploring overlapping genetic architecture between traits, to identify novel genetic associations for fibroblast growth factor 23 (FGF23). Methods: We applied MTAG to genetic variants common to GWAS of 5 genetically correlated MM markers (calcium, phosphorus, FGF23, 25-hydroxyvitamin D (25(OH)D) and parathyroid hormone (PTH)) in European-ancestry subjects. We integrated information from UKBioBank GWAS for blood levels for phosphate, 25(OH)D and calcium (n=366,484), and CHARGE GWAS for PTH (n=29,155) and FGF23 (n=16,624). We then used functional genomics to model interactive and dynamic networks to identify novel associations between genetic traits and circulating FGF23. Results: MTAG increased the effective sample size for all MM markers to n=50,325 for FGF23. After clumping, MTAG identified independent genome-wide significant SNPs for all traits, including 62 loci for FGF23. Many of these loci have not been previously reported in single-trait analyses. Through functional genomics we identified Histidine-rich glycoprotein (HRG) and high mobility group box 1(HMGB1) genes as master regulators of downstream canonical pathways associated with FGF23. HRG-HMGB1 network interactions were also highly enriched in left ventricular heart tissue of a cohort of deceased hemodialysis patients. Conclusion: Our findings highlight the importance of MTAG analysis of MM markers to boost the number of genome-wide significant loci for FGF23 to identify novel genetic traits. Functional genomics revealed novel networks that inform unique cellular functions and identified HRG-HMGB1 as key master regulators of FGF23 and cardiovascular disease in CKD. Future studies will provide a deeper understanding of genetic signatures associated with FGF23 and its role in health and disease.

3.
Proc Natl Acad Sci U S A ; 120(23): e2220851120, 2023 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-37252981

RESUMEN

G protein-coupled receptors, including PTHR, are pivotal for controlling metabolic processes ranging from serum phosphate and vitamin D levels to glucose uptake, and cytoplasmic interactors may modulate their signaling, trafficking, and function. We now show that direct interaction with Scribble, a cell polarity-regulating adaptor protein, modulates PTHR activity. Scribble is a crucial regulator for establishing and developing tissue architecture, and its dysregulation is involved in various disease conditions, including tumor expansion and viral infections. Scribble co-localizes with PTHR at basal and lateral surfaces in polarized cells. Using X-ray crystallography, we show that colocalization is mediated by engaging a short sequence motif at the PTHR C-terminus using Scribble PDZ1 and PDZ3 domain, with binding affinities of 31.7 and 13.4 µM, respectively. Since PTHR controls metabolic functions by actions on renal proximal tubules, we engineered mice to selectively knockout Scribble in proximal tubules. The loss of Scribble impacted serum phosphate and vitamin D levels and caused significant plasma phosphate elevation and increased aggregate vitamin D3 levels, whereas blood glucose levels remained unchanged. Collectively these results identify Scribble as a vital regulator of PTHR-mediated signaling and function. Our findings reveal an unexpected link between renal metabolism and cell polarity signaling.


Asunto(s)
Fosfatos , Vitamina D , Ratones , Animales , Unión Proteica , Vitaminas , Receptores de Hormona Paratiroidea/metabolismo , Homeostasis , Hormona Paratiroidea/metabolismo , Receptor de Hormona Paratiroídea Tipo 1/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo
4.
Biochem J ; 480(9): 685-699, 2023 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-37132631

RESUMEN

The Na+-dependent phosphate cotransporter-2A (NPT2A, SLC34A1) is a primary regulator of extracellular phosphate homeostasis. Its most prominent structural element is a carboxy-terminal PDZ ligand that binds Na+/H+ Exchanger Regulatory Factor-1 (NHERF1, SLC9A3R1). NHERF1, a multidomain PDZ protein, establishes NPT2A membrane localization and is required for hormone-inhibitable phosphate transport. NPT2A also possesses an uncharacterized internal PDZ ligand. Two recent clinical reports describe congenital hypophosphatemia in children harboring Arg495His or Arg495Cys variants within the internal PDZ motif. The wild-type internal 494TRL496 PDZ ligand binds NHERF1 PDZ2, which we consider a regulatory domain. Ablating the internal PDZ ligand with a 494AAA496 substitution blocked hormone-inhibitable phosphate transport. Complementary approaches, including CRISPR/Cas9 technology, site-directed mutagenesis, confocal microscopy, and modeling, showed that NPT2A Arg495His or Arg495Cys variants do not support PTH or FGF23 action on phosphate transport. Coimmunoprecipitation experiments indicate that both variants bind NHERF1 similarly to WT NPT2A. However, in contrast with WT NPT2A, NPT2A Arg495His, or Arg495Cys variants remain at the apical membrane and are not internalized in response to PTH. We predict that Cys or His substitution of the charged Arg495 changes the electrostatics, preventing phosphorylation of the upstream Thr494, interfering with phosphate uptake in response to hormone action, and inhibiting NPT2A trafficking. We advance a model wherein the carboxy-terminal PDZ ligand defines apical localization NPT2A, while the internal PDZ ligand is essential for hormone-triggered phosphate transport.


Asunto(s)
Hipofosfatemia , Fosfatos , Niño , Humanos , Ligandos , Fosfatos/metabolismo , Hormonas , Mutación , Fosfoproteínas/metabolismo , Intercambiadores de Sodio-Hidrógeno/genética , Intercambiadores de Sodio-Hidrógeno/química , Intercambiadores de Sodio-Hidrógeno/metabolismo
5.
bioRxiv ; 2023 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-36945373

RESUMEN

The Na + -dependent phosphate cotransporter-2A (NPT2A, SLC34A1) is a primary regulator of extracellular phosphate homeostasis. Its most prominent structural element is a carboxy-terminal PDZ ligand that binds Na + /H + Exchanger Regulatory Factor-1 (NHERF1, SLC9A3R1). NHERF1, a multidomain PDZ protein,establishes NPT2A membrane localization and is required for hormone-sensitive phosphate transport. NPT2A also possesses an uncharacterized internal PDZ ligand. Two recent clinical reports describe congenital hypophosphatemia in children harboring Arg 495 His or Arg 495 Cys variants within the internal PDZ motif. The wild-type internal 494 TRL 496 PDZ ligand binds NHERF1 PDZ2, which we consider a regulatory domain. Ablating the internal PDZ ligand with a 494 AAA 496 substitution blocked hormone-sensitive phosphate transport. Complementary approaches, including CRISPR/Cas9 technology, site-directed mutagenesis, confocal microscopy, and modeling, showed that NPT2A Arg 495 His or Arg 495 Cys variants do not support PTH or FGF23 action on phosphate transport. Coimmunoprecipitation experiments indicate that both variants bind NHERF1 similarly to WT NPT2A. However, in contrast to WT NPT2A, NPT2A Arg 495 His or Arg 495 Cys variants remain at the apical membrane and are not internalized in response to PTH. We predict that Cys or His substitution of the charged Arg 495 changes the electrostatics, preventing phosphorylation of the upstream Thr 494 , interfering with phosphate uptake in response to hormone action, and inhibiting NPT2A trafficking. We advance a model wherein the carboxyterminal PDZ ligand defines apical localization NPT2A, while the internal PDZ ligand is essential for hormone-triggered phosphate transport.

6.
Vitam Horm ; 120: 1-21, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35953106

RESUMEN

Parathyroid hormone (PTH) and PTH-related peptide (PTHrP) regulate extracellular phosphate and calcium homeostasis as well as bone remodeling. PTH is a classic endocrine peptide hormone whose synthesis and negative feedback by multiple factors control release from the parathyroid glands. PTHrP is ubiquitously expressed (pre- and postnatally) and acts in an autocrine/paracrine manner. This review considers the structural pharmacology and actions of PTH and PTHrP, biological consequences of inherited mutations, engineered analogs that illuminate similarities and differences in physiologic actions, and targeted therapeutic opportunities.


Asunto(s)
Proteína Relacionada con la Hormona Paratiroidea , Hormona Paratiroidea , Humanos , Hormona Paratiroidea/genética , Hormona Paratiroidea/farmacología , Proteína Relacionada con la Hormona Paratiroidea/farmacología
7.
J Clin Endocrinol Metab ; 107(9): e3866-e3876, 2022 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-35587600

RESUMEN

CONTEXT: Chronic kidney disease (CKD) causes multiple interrelated disturbances in mineral metabolism. Genetic studies in the general population have identified common genetic variants associated with circulating phosphate, calcium, parathyroid hormone (PTH), and fibroblast growth factor 23 (FGF23). OBJECTIVE: In this study we aimed to discover genetic variants associated with circulating mineral markers in CKD. METHODS: We conducted candidate single-nucleotide variation (SNV) analysis in 3027 participants in the multiethnic Chronic Renal Insufficiency Cohort (CRIC) to determine the associations between SNVs and circulating levels of mineral markers. RESULTS: SNVs adjacent to or within genes encoding the regulator of G protein-coupled signaling 14 (RGS14) and the calcium-sensing receptor (CASR) were associated with levels of mineral metabolites. The strongest associations (P < .001) were at rs4074995 (RGS14) for phosphate (0.09 mg/dL lower per minor allele) and FGF23 (8.6% lower), and at rs1801725 (CASR) for calcium (0.12 mg/dL higher). In addition, the prevalence of hyperparathyroidism differed by rs4074995 (RGS14) genotype (chi-square P < .0001). Differential inheritance by race was noted for the minor allele of RGS14. Expression quantitative loci (eQTL) analysis showed that rs4074995 was associated with lower RGS14 gene expression in glomeruli (P = 1.03 × 10-11) and tubules (P = 4.0 × 10-4). CONCLUSION: We evaluated genetic variants associated with mineral metabolism markers in a CKD population. Participants with CKD and the minor allele of rs4074995 (RGS14) had lower phosphorus, lower plasma FGF23, and lower prevalence of hyperparathyroidism. The minor allele of RGS14 was also associated with lower gene expression in the kidney. Further studies are needed to elucidate the effect of rs4074995 on the pathogenesis of disordered mineral metabolism in CKD.


Asunto(s)
Calcio , Insuficiencia Renal Crónica , Biomarcadores , Factores de Crecimiento de Fibroblastos/genética , Humanos , Minerales/metabolismo , Hormona Paratiroidea , Fosfatos , Receptores Sensibles al Calcio , Insuficiencia Renal Crónica/epidemiología , Insuficiencia Renal Crónica/genética
8.
J Biol Chem ; 298(5): 101836, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35307350

RESUMEN

Phosphate homeostasis, mediated by dietary intake, renal absorption, and bone deposition, is incompletely understood because of the uncharacterized roles of numerous implicated protein factors. Here, we identified a novel role for one such element, regulator of G protein signaling 14 (RGS14), suggested by genome-wide association studies to associate with dysregulated Pi levels. We show that human RGS14 possesses a carboxy-terminal PDZ ligand required for sodium phosphate cotransporter 2a (NPT2A) and sodium hydrogen exchanger regulatory factor-1 (NHERF1)-mediated renal Pi transport. In addition, we found using isotope uptake measurements combined with bioluminescence resonance energy transfer assays, siRNA knockdown, pull-down and overlay assays, and molecular modeling that secreted proteins parathyroid hormone (PTH) and fibroblast growth factor 23 inhibited Pi uptake by inducing dissociation of the NPT2A-NHERF1 complex. PTH failed to affect Pi transport in cells expressing RGS14, suggesting that it suppresses hormone-sensitive but not basal Pi uptake. Interestingly, RGS14 did not affect PTH-directed G protein activation or cAMP formation, implying a postreceptor site of action. Further pull-down experiments and direct binding assays indicated that NPT2A and RGS14 bind distinct PDZ domains on NHERF1. We showed that RGS14 expression in human renal proximal tubule epithelial cells blocked the effects of PTH and fibroblast growth factor 23 and stabilized the NPT2A-NHERF1 complex. In contrast, RGS14 genetic variants bearing mutations in the PDZ ligand disrupted RGS14 binding to NHERF1 and subsequent PTH-sensitive Pi transport. In conclusion, these findings identify RGS14 as a novel regulator of hormone-sensitive Pi transport. The results suggest that changes in RGS14 function or abundance may contribute to the hormone resistance and hyperphosphatemia observed in kidney diseases.


Asunto(s)
Fosfoproteínas/metabolismo , Proteínas RGS , Intercambiadores de Sodio-Hidrógeno/metabolismo , Factores de Crecimiento de Fibroblastos/genética , Factores de Crecimiento de Fibroblastos/metabolismo , Proteínas de Unión al GTP/metabolismo , Estudio de Asociación del Genoma Completo , Humanos , Ligandos , Hormona Paratiroidea/metabolismo , Fosfatos/metabolismo , Proteínas RGS/genética , Proteínas RGS/metabolismo , Proteínas Cotransportadoras de Sodio-Fosfato de Tipo IIa/genética , Proteínas Cotransportadoras de Sodio-Fosfato de Tipo IIa/metabolismo
9.
Int J Mol Sci ; 22(20)2021 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-34681624

RESUMEN

SARS-CoV-2 exploits the respiratory tract epithelium including lungs as the primary entry point and reaches other organs through hematogenous expansion, consequently causing multiorgan injury. Viral E protein interacts with cell junction-associated proteins PALS1 or ZO-1 to gain massive penetration by disrupting the inter-epithelial barrier. Conversely, receptor-mediated viral invasion ensures limited but targeted infections in multiple organs. The ACE2 receptor represents the major virion loading site by virtue of its wide tissue distribution as demonstrated in highly susceptible lung, intestine, and kidney. In brain, NRP1 mediates viral endocytosis in a similar manner to ACE2. Prominently, PDZ interaction involves the entire viral loading process either outside or inside the host cells, whereas E, ACE2, and NRP1 provide the PDZ binding motif required for interacting with PDZ domain-containing proteins PALS1, ZO-1, and NHERF1, respectively. Hijacking NHERF1 and ß-arrestin by virion loading may impair specific sensory GPCR signalosome assembling and cause disordered cellular responses such as loss of smell and taste. PDZ interaction enhances SARS-CoV-2 invasion by supporting viral receptor membrane residence, implying that the disruption of these interactions could diminish SARS-CoV-2 infections and be another therapeutic strategy against COVID-19 along with antibody therapy. GPCR-targeted drugs are likely to alleviate pathogenic symptoms-associated with SARS-CoV-2 infection.


Asunto(s)
COVID-19/patología , Receptores Acoplados a Proteínas G/metabolismo , Antivirales/farmacología , Antivirales/uso terapéutico , COVID-19/metabolismo , COVID-19/virología , Humanos , Dominios PDZ , Receptores Acoplados a Proteínas G/química , SARS-CoV-2/aislamiento & purificación , SARS-CoV-2/fisiología , Transducción de Señal , Internalización del Virus/efectos de los fármacos , Tratamiento Farmacológico de COVID-19
10.
iScience ; 24(7): 102770, 2021 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-34189428

RESUMEN

SARS-CoV-2 is responsible for the global COVID-19 pandemic. Angiotensin converting enzyme 2 (ACE2) is the membrane-delimited receptor for SARS-CoV-2. Lung, intestine, and kidney, major sites of viral infection, express ACE2 that harbors an intracellular, carboxy-terminal PDZ-recognition motif. These organs prominently express the PDZ protein Na+/H+ exchanger regulatory factor-1 (NHERF1). Here, we report NHERF1 tethers ACE2 and augments SARS-CoV-2 cell entry. ACE2 directly binds both NHERF1 PDZ domains. Disruption of either NHERF1 PDZ core-binding motif or the ACE2 PDZ recognition sequence eliminates interaction. Proximity ligation assays establish that ACE2 and NHERF1 interact at constitutive expression levels in human lung and intestine cells. Ablating ACE2 interaction with NHERF1 accelerated SARS-CoV-2 cell entry. Conversely, elimination of the ACE2 C-terminal PDZ-binding motif decreased ACE2 membrane residence and reduced pseudotyped virus entry. We conclude that the PDZ interaction of ACE2 with NHERF1 facilitates SARS-CoV-2 internalization. ß-Arrestin is likely indispensable, as with G protein-coupled receptors.

11.
J Biol Chem ; 296: 100473, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33639163

RESUMEN

The type II sodium-dependent phosphate cotransporter (NPT2A) mediates renal phosphate uptake. The NPT2A is regulated by parathyroid hormone (PTH) and fibroblast growth factor 23, which requires Na+/H+ exchange regulatory factor-1 (NHERF1), a multidomain PDZ-containing phosphoprotein. Phosphocycling controls the association between NHERF1 and the NPT2A. Here, we characterize the critical involvement of G protein-coupled receptor kinase 6A (GRK6A) in mediating PTH-sensitive phosphate transport by targeted phosphorylation coupled with NHERF1 conformational rearrangement, which in turn allows phosphorylation at a secondary site. GRK6A, through its carboxy-terminal PDZ recognition motif, binds NHERF1 PDZ1 with greater affinity than PDZ2. However, the association between NHERF1 PDZ2 and GRK6A is necessary for PTH action. Ser162, a PKCα phosphorylation site in PDZ2, regulates the binding affinity between PDZ2 and GRK6A. Substitution of Ser162 with alanine (S162A) blocks the PTH action but does not disrupt the interaction between NHERF1 and the NPT2A. Replacement of Ser162 with aspartic acid (S162D) abrogates the interaction between NHERF1 and the NPT2A and concurrently PTH action. We used amber codon suppression to generate a phosphorylated Ser162(pSer162)-PDZ2 variant. KD values determined by fluorescence anisotropy indicate that incorporation of pSer162 increased the binding affinity to the carboxy terminus of GRK6A 2-fold compared with WT PDZ2. Molecular dynamics simulations predict formation of an electrostatic network between pSer162 and Asp183 of PDZ2 and Arg at position -1 of the GRK6A PDZ-binding motif. Our results suggest that PDZ2 plays a regulatory role in PTH-sensitive NPT2A-mediated phosphate transport and phosphorylation of Ser162 in PDZ2 modulates the interaction with GRK6A.


Asunto(s)
Quinasas de Receptores Acoplados a Proteína-G/metabolismo , Fosfoproteínas/metabolismo , Intercambiadores de Sodio-Hidrógeno/metabolismo , Transporte Biológico , Factor-23 de Crecimiento de Fibroblastos , Factores de Crecimiento de Fibroblastos/metabolismo , Quinasas de Receptores Acoplados a Proteína-G/genética , Humanos , Transporte Iónico , Simulación de Dinámica Molecular , Dominios PDZ/genética , Hormona Paratiroidea/metabolismo , Fosfatos/metabolismo , Fosfoproteínas/genética , Fosforilación , Unión Proteica , Conformación Proteica , Intercambiadores de Sodio-Hidrógeno/genética , Proteínas Cotransportadoras de Sodio-Fosfato de Tipo IIa/genética , Proteínas Cotransportadoras de Sodio-Fosfato de Tipo IIa/metabolismo
12.
Int J Mol Sci ; 22(3)2021 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-33499384

RESUMEN

Na+/H+ exchange factor-1 (NHERF1), a multidomain PDZ scaffolding phosphoprotein, is required for the type II sodium-dependent phosphate cotransporter (NPT2A)-mediated renal phosphate absorption. Both PDZ1 and PDZ2 domains are involved in NPT2A-dependent phosphate uptake. Though harboring identical core-binding motifs, PDZ1 and PDZ2 play entirely different roles in hormone-regulated phosphate transport. PDZ1 is required for the interaction with the C-terminal PDZ-binding sequence of NPT2A (-TRL). Remarkably, phosphocycling at Ser290 distant from PDZ1, the penultimate step for both parathyroid hormone (PTH) and fibroblast growth factor-23 (FGF23) regulation, controls the association between NHERF1 and NPT2A. PDZ2 interacts with the C-terminal PDZ-recognition motif (-TRL) of G Protein-coupled Receptor Kinase 6A (GRK6A), and that promotes phosphorylation of Ser290. The compelling biological puzzle is how PDZ1 and PDZ2 with identical GYGF core-binding motifs specifically recognize distinct binding partners. Binding determinants distinct from the canonical PDZ-ligand interactions and located "outside the box" explain PDZ domain specificity. Phosphorylation of NHERF1 by diverse kinases and associated conformational changes in NHERF1 add more complexity to PDZ-binding diversity.


Asunto(s)
Hormonas/química , Fosfoproteínas/química , Intercambiadores de Sodio-Hidrógeno/química , Proteínas Cotransportadoras de Sodio-Fosfato de Tipo IIa/química , Secuencias de Aminoácidos , Factor-23 de Crecimiento de Fibroblastos , Quinasas de Receptores Acoplados a Proteína-G/química , Humanos , Transporte Iónico , Ligandos , Mutación , Hormona Paratiroidea/química , Fosfatos/química , Fosforilación , Unión Proteica , Conformación Proteica , Dominios Proteicos , Serina/química
13.
Endocr Relat Cancer ; 27(7): 441-456, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32357310

RESUMEN

Bone metastases are common in advanced prostate cancer patients, but mechanisms by which specific pro-metastatic skeletal niches are formed before tumor cell homing are unclear. We aimed to analyze the effects of proteins secreted by primary prostate tumors on the bone microenvironment before the settlement and propagation of metastases. Here, using an in vivo pre-metastatic prostate cancer model based on the implantation of prostate adenocarcinoma TRAMP-C1 cells in immunocompetent C57BL/6 mice, we identify MINDIN as a prostate tumor secreted protein that induces bone microstructural and bone remodeling gene expression changes before tumor cell homing. Associated with these changes, increased tumor cell adhesion to the endosteum ex vivo and to osteoblasts in vitro was observed. Furthermore, MINDIN promoted osteoblast proliferation and mineralization and monocyte expression of osteoclast markers. ß-catenin signaling pathway revealed to mediate MINDIN actions on osteoblast gene expression but failed to affect MINDIN-induced adhesion to prostate tumor cells or monocyte differentiation to osteoclasts. Our study evidences that MINDIN secretion by primary prostate tumors creates a favorable bone environment for tumor cell homing before metastatic spread.


Asunto(s)
Proteínas de la Matriz Extracelular/metabolismo , Proteínas de Neoplasias/metabolismo , Neoplasias de la Próstata/metabolismo , beta Catenina/metabolismo , Animales , Modelos Animales de Enfermedad , Humanos , Masculino , Ratones , Transfección
14.
Handb Exp Pharmacol ; 262: 27-45, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32462362

RESUMEN

Parathyroid hormone (PTH), PTH-related peptide (PTHrP), PTHR, and their cognate G protein-coupled receptor play defining roles in the regulation of extracellular calcium and phosphate metabolism and in controlling skeletal growth and repair. Acting through complex signaling mechanisms that in many instances proceed in a tissue-specific manner, precise control of these processes is achieved. A variety of direct and indirect disease processes, along with genetic anomalies, can cause these schemes to become dysfunctional. Here, we review the basic components of this regulatory network and present both the well-established elements and emerging findings and concepts with the overall objective to provide a framework for understanding the elementary aspects of how PTH and PTHrP behave and as a call to encourage further investigation that will yield more comprehensive understanding of the physiological and pathological steps at play, with a goal toward novel therapeutic interventions.


Asunto(s)
Proteína Relacionada con la Hormona Paratiroidea , Hormona Paratiroidea , Huesos , Calcio/química , Calcio/metabolismo , Transducción de Señal
15.
Endocrinology ; 160(10): 2204-2214, 2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31237611

RESUMEN

Phosphate homeostasis is critical for many cellular processes and is tightly regulated. The sodium-dependent phosphate cotransporter, NaPi2a, is the major regulator of urinary phosphate reabsorption in the renal proximal tubule. Its activity is dependent upon its brush border localization that is regulated by fibroblast growth factor 23 (FGF23) and PTH. High levels of FGF23, as are seen in the Hyp mouse model of human X-linked hypophosphatemia, lead to renal phosphate wasting. Long-term treatment of Hyp mice with 1,25-dihydroxyvitamin D (1,25D) or 1,25D analogues has been shown to improve renal phosphate wasting in the setting of increased FGF23 mRNA expression. Studies were undertaken to define the cellular and molecular basis for this apparent FGF23 resistance. 1,25D increased FGF23 protein levels in the cortical bone and circulation of Hyp mice but did not impair FGF23 cleavage. 1,25D attenuated urinary phosphate wasting as early as one hour postadministration, without suppressing FGF23 receptor/coreceptor expression. Although 1,25D treatment induced expression of early growth response 1, an early FGF23 responsive gene required for its phosphaturic effects, it paradoxically enhanced renal phosphate reabsorption and NaPi2a protein expression in renal brush border membranes (BBMs) within one hour. The Na-H+ exchange regulatory factor 1 (NHERF1) is a scaffolding protein thought to anchor NaPi2a to the BBM. Although 1,25D did not alter NHERF1 protein levels acutely, it enhanced NHERF1-NaPi2a interactions in Hyp mice. 1,25D also prevented the decrease in NHERF1/NaPi2a interactions in PTH-treated wild-type mice. Thus, these investigations identify a novel role for 1,25D in the hormonal regulation of renal phosphate handling.


Asunto(s)
Células Epiteliales/efectos de los fármacos , Hipofosfatemia Familiar/prevención & control , Hipofosfatemia/genética , Túbulos Renales Proximales/citología , Proteínas Cotransportadoras de Sodio-Fosfato de Tipo IIa/metabolismo , Vitamina D/análogos & derivados , Animales , Línea Celular , Femenino , Factor-23 de Crecimiento de Fibroblastos , Factores de Crecimiento de Fibroblastos/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Hipofosfatemia/metabolismo , Sistema de Señalización de MAP Quinasas , Masculino , Ratones , Transporte de Proteínas , Receptores de Factores de Crecimiento de Fibroblastos , Proteínas Cotransportadoras de Sodio-Fosfato de Tipo IIa/genética , Vitamina D/farmacología
16.
J Biol Chem ; 294(29): 11297-11310, 2019 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-31171716

RESUMEN

The Na+/H+ exchange regulatory cofactor 1 (NHERF1) protein modulates the assembly and intracellular trafficking of several transmembrane G protein-coupled receptors (GPCRs) and ion transport proteins with the membrane-cytoskeleton adapter protein ezrin. Here, we applied solution NMR and small-angle neutron scattering (SANS) to structurally characterize full-length NHERF1 and disease-associated variants that are implicated in impaired phosphate homeostasis. Using NMR, we mapped the modular architecture of NHERF1, which is composed of two structurally-independent PDZ domains that are connected by a flexible, disordered linker. We observed that the ultra-long and disordered C-terminal tail of NHERF1 has a type 1 PDZ-binding motif that interacts weakly with the proximal, second PDZ domain to form a dynamically autoinhibited structure. Using ensemble-optimized analysis of SANS data, we extracted the molecular size distribution of structures from the extensive conformational space sampled by the flexible chain. Our results revealed that NHERF1 is a diffuse ensemble of variable PDZ domain configurations and a disordered C-terminal tail. The joint NMR/SANS data analyses of three disease variants (L110V, R153Q, and E225K) revealed significant differences in the local PDZ domain structures and in the global conformations compared with the WT protein. Furthermore, we show that the substitutions affect the affinity and kinetics of NHERF1 binding to ezrin and to a C-terminal peptide from G protein-coupled receptor kinase 6A (GRK6A). These findings provide important insight into the modulation of the intrinsic flexibility of NHERF1 by disease-associated point mutations that alter the dynamic assembly of signaling complexes.


Asunto(s)
Fosfoproteínas/metabolismo , Transducción de Señal , Intercambiadores de Sodio-Hidrógeno/metabolismo , Humanos , Cinética , Mutación , Resonancia Magnética Nuclear Biomolecular , Dominios PDZ , Fosfoproteínas/química , Unión Proteica , Estructura Secundaria de Proteína , Intercambiadores de Sodio-Hidrógeno/química , Resonancia por Plasmón de Superficie
17.
Endocrinology ; 160(8): 1797-1810, 2019 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-31087002

RESUMEN

Prior studies have demonstrated that the calcium pump, plasma membrane calcium ATPase 2 (PMCA2), mediates calcium transport into milk and prevents mammary epithelial cell death during lactation. PMCA2 also regulates cell proliferation and cell death in breast cancer cells, in part by maintaining the receptor tyrosine kinase ErbB2/HER2 within specialized plasma membrane domains. Furthermore, the regulation of PMCA2 membrane localization and activity in breast cancer cells requires its interaction with the PDZ domain-containing scaffolding molecule sodium-hydrogen exchanger regulatory factor (NHERF) 1. In this study, we asked whether NHERF1 also interacts with PMCA2 in normal mammary epithelial cells during lactation. Our results demonstrate that NHERF1 expression is upregulated during lactation and that it interacts with PMCA2 at the apical membrane of secretory luminal epithelial cells. Similar to PMCA2, NHERF1 expression is rapidly reduced by milk stasis after weaning. Examining lactating NHERF1 knockout (KO) mice showed that NHERF1 contributes to the proper apical location of PMCA2, for proper apical-basal polarity in luminal epithelial cells, and that it participates in the suppression of Stat3 activation and the prevention of premature mammary gland involution. Additionally, we found that PMCA2 also interacts with the closely related scaffolding molecule, NHERF2, at the apical membrane, which likely maintains PMCA2 at the plasma membrane of mammary epithelial cells in lactating NHERF1KO mice. Based on these data, we conclude that, during lactation, NHERF1 is required for the proper expression and apical localization of PMCA2, which, in turn, contributes to preventing the premature activation of Stat3 and the lysosome-mediated cell death pathway that usually occur only early in mammary involution.


Asunto(s)
Glándulas Mamarias Animales/fisiología , Fosfoproteínas/fisiología , ATPasas Transportadoras de Calcio de la Membrana Plasmática/análisis , Intercambiadores de Sodio-Hidrógeno/fisiología , Animales , Polaridad Celular , Femenino , Lactancia , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Fosfoproteínas/análisis , Intercambiadores de Sodio-Hidrógeno/análisis
18.
Anal Chem ; 91(11): 6976-6980, 2019 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-31082219

RESUMEN

Hydrogen-deuterium exchange-mass spectrometry (HDXMS) is a powerful technology to characterize conformations and conformational dynamics of proteins and protein complexes. HDXMS has been widely used in the field of therapeutics for the development of protein drugs. Although sufficient sequence coverage is critical to the success of HDXMS, it is sometimes difficult to achieve. In this study, we developed a HDXMS data analysis strategy that includes parallel post-translational modification (PTM) scanning in HDXMS analysis. Using a membrane-delimited G protein-coupled receptor (vasopressin type 2 receptor; V2R) and a cytosolic protein (Na+/H+ exchanger regulatory factor-1; NHERF1) as examples, we demonstrate that this strategy substantially improves protein sequence coverage, especially in key structural regions likely including PTMs themselves that play important roles in protein conformational dynamics and function.


Asunto(s)
Espectrometría de Masas de Intercambio de Hidrógeno-Deuterio/métodos , Procesamiento Proteico-Postraduccional , Proteínas/química , Proteínas/metabolismo , Glicosilación , Humanos , Fosfoproteínas/química , Fosfoproteínas/metabolismo , Receptores de Vasopresinas/química , Receptores de Vasopresinas/metabolismo , Intercambiadores de Sodio-Hidrógeno/química , Intercambiadores de Sodio-Hidrógeno/metabolismo
19.
J Biol Chem ; 294(12): 4546-4571, 2019 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-30696771

RESUMEN

Na+-H+ exchanger regulatory factor-1 (NHERF1) is a PDZ protein that scaffolds membrane proteins, including sodium-phosphate co-transport protein 2A (NPT2A) at the plasma membrane. NHERF1 is a phosphoprotein with 40 Ser and Thr residues. Here, using tandem MS analysis, we characterized the sites of parathyroid hormone (PTH)-induced NHERF1 phosphorylation and identified 10 high-confidence phosphorylation sites. Ala replacement at Ser46, Ser162, Ser181, Ser269, Ser280, Ser291, Thr293, Ser299, and Ser302 did not affect phosphate uptake, but S290A substitution abolished PTH-dependent phosphate transport. Unexpectedly, Ser290 was rapidly dephosphorylated and rephosphorylated after PTH stimulation, and we found that protein phosphatase 1α (PP1α), which binds NHERF1 through a conserved VxF/W PP1 motif, dephosphorylates Ser290 Mutating 257VPF259 eliminated PP1 binding and blunted dephosphorylation. Tautomycetin blocked PP1 activity and abrogated PTH-sensitive phosphate transport. Using fluorescence lifetime imaging (FLIM), we observed that PTH paradoxically and transiently elevates intracellular phosphate. Added phosphate blocked PP1α-mediated Ser290 dephosphorylation of recombinant NHERF1. Hydrogen-deuterium exchange MS revealed that ß-sheets in NHERF1's PDZ2 domain display lower deuterium uptake than those in the structurally similar PDZ1, implying that PDZ1 is more cloistered. Dephosphorylated NHERF1 exhibited faster exchange at C-terminal residues suggesting that NHERF1 dephosphorylation precedes Ser290 rephosphorylation. Our results show that PP1α and NHERF1 form a holoenzyme and that a multiprotein kinase cascade involving G protein-coupled receptor kinase 6A controls the Ser290 phosphorylation status of NHERF1 and regulates PTH-sensitive, NPT2A-mediated phosphate uptake. These findings reveal how reversible phosphorylation modifies protein conformation and function and the biochemical mechanisms underlying PTH control of phosphate transport.


Asunto(s)
Hormona Paratiroidea/fisiología , Fosfatos/metabolismo , Fosfoproteínas/metabolismo , Intercambiadores de Sodio-Hidrógeno/metabolismo , Proteínas Cotransportadoras de Sodio-Fosfato de Tipo IIa/fisiología , Secuencia de Aminoácidos , Cristalografía por Rayos X , Furanos/farmacología , Células HEK293 , Humanos , Transporte Iónico/fisiología , Lípidos/farmacología , Fosfoproteínas/química , Fosforilación , Conformación Proteica , Receptores de Neuropéptido Y/antagonistas & inhibidores , Receptores de Neuropéptido Y/metabolismo , Serina/metabolismo , Intercambiadores de Sodio-Hidrógeno/química
20.
J Biol Chem ; 294(3): 887-901, 2019 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-30463939

RESUMEN

Unlike other ErbB family members, HER2 levels are maintained on the cell surface when the receptor is activated, allowing prolonged signaling and contributing to its transforming ability. Interactions between HER2, HSP90, PMCA2, and NHERF1 within specialized plasma membrane domains contribute to the membrane retention of HER2. We hypothesized that the scaffolding protein ezrin, which has been shown to interact with NHERF1, might also help stabilize the HER2-PMCA2-NHERF1 complex at the plasma membrane. Therefore, we examined ezrin expression and its relationship with HER2, NHERF1, and PMCA2 levels in murine and human breast cancers. We also used genetic knockdown and/or pharmacologic inhibition of ezrin, HSP90, NHERF1, PMCA2, and HER2 to examine the functional relationships between these factors and membrane retention of HER2. We found ezrin to be expressed at low levels at the apical surface of normal mammary epithelial cells, but its expression is up-regulated and correlates with HER2 expression in hyperplasia and tumors in murine mammary tumor virus-Neu mice, in human HER2-positive breast cancer cell lines, and in ductal carcinoma in situ and invasive breast cancers from human patients. In breast cancer cells, ezrin co-localizes and interacts with HER2, NHERF1, PMCA2, and HSP90 in specialized membrane domains, and inhibiting ezrin disrupts interactions between HER2, PMCA2, NHERF1, and HSP90, inhibiting HER2 signaling and causing PKCα-mediated internalization and degradation of HER2. Inhibition of ezrin synergizes with lapatinib in a PKCα-dependent fashion to inhibit proliferation and promote apoptosis in HER2-positive breast cancer cells. We conclude that ezrin stabilizes a multiprotein complex that maintains active HER2 at the cell surface.


Asunto(s)
Neoplasias de la Mama/metabolismo , Proteínas del Citoesqueleto/antagonistas & inhibidores , Lapatinib/farmacología , Proteína Quinasa C-alfa/metabolismo , Receptor ErbB-2/metabolismo , Transducción de Señal/efectos de los fármacos , Animales , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Línea Celular Tumoral , Proteínas del Citoesqueleto/genética , Proteínas del Citoesqueleto/metabolismo , Femenino , Humanos , Neoplasias Mamarias Animales/tratamiento farmacológico , Neoplasias Mamarias Animales/genética , Neoplasias Mamarias Animales/metabolismo , Proteína Quinasa C-alfa/genética , Receptor ErbB-2/genética , Transducción de Señal/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA