Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38853994

RESUMEN

The fundamental steps in high-grade serous ovarian cancer (HGSOC) initiation are unclear, thus providing critical barriers to the development of prevention or early detection strategies for this deadly disease. Increasing evidence demonstrates most HGSOC starts in the fallopian tube epithelium (FTE). Current models propose HGSOC initiates when FTE cells acquire increasing numbers of mutations allowing cells to evolve into serous tubal intraepithelial carcinoma (STIC) precursors and then to full blown cancer. Here we report that epigenetically altered mesenchymal stem cells (termed high risk MSC-hrMSCs) can be detected prior to the formation of ovarian cancer precursor lesions. These hrMSCs drive DNA damage in the form of DNA double strand breaks in FTE cells while also promoting the survival of FTE cells in the face of DNA damage. Indicating the hrMSC may actually drive cancer initiation, we find hrMSCs induce full malignant transformation of otherwise healthy, primary FTE resulting in metastatic cancer in vivo . Further supporting a role for hrMSCs in cancer initiation in humans, we demonstrate that hrMSCs are highly enriched in BRCA1/2 mutation carriers and increase with age. Combined these findings indicate that hrMSCs may incite ovarian cancer initiation. These findings have important implications for ovarian cancer detection and prevention.

2.
Biomolecules ; 13(11)2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-38002286

RESUMEN

The ability of cancer cells to detach from the primary site and metastasize is the main cause of cancer- related death among all cancer types. Epithelial-to-mesenchymal transition (EMT) is the first event of the metastatic cascade, resulting in the loss of cell-cell adhesion and the acquisition of motile and stem-like phenotypes. A critical modulator of EMT in cancer cells is the stromal tumor microenvironment (TME), which can promote the acquisition of a mesenchymal phenotype through direct interaction with cancer cells or changes to the broader microenvironment. In this review, we will explore the role of stromal cells in modulating cancer cell EMT, with particular emphasis on the function of mesenchymal stromal/stem cells (MSCs) through the activation of EMT-inducing pathways, extra cellular matrix (ECM) remodeling, immune cell alteration, and metabolic rewiring.


Asunto(s)
Neoplasias , Humanos , Neoplasias/metabolismo , Matriz Extracelular/metabolismo , Transición Epitelial-Mesenquimal , Microambiente Tumoral
3.
Am J Physiol Cell Physiol ; 325(3): C731-C749, 2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-37545409

RESUMEN

The ovarian cancer tumor microenvironment (TME) consists of a constellation of abundant cellular components, extracellular matrix, and soluble factors. Soluble factors, such as cytokines, chemokines, structural proteins, extracellular vesicles, and metabolites, are critical means of noncontact cellular communication acting as messengers to convey pro- or antitumorigenic signals. Vast advancements have been made in our understanding of how cancer cells adapt their metabolism to meet environmental demands and utilize these adaptations to promote survival, metastasis, and therapeutic resistance. The stromal TME contribution to this metabolic rewiring has been relatively underexplored, particularly in ovarian cancer. Thus, metabolic activity alterations in the TME hold promise for further study and potential therapeutic exploitation. In this review, we focus on the cellular components of the TME with emphasis on 1) metabolic signatures of ovarian cancer; 2) understanding the stromal cell network and their metabolic cross talk with tumor cells; and 3) how stromal and tumor cell metabolites alter intratumoral immune cell metabolism and function. Together, these elements provide insight into the metabolic influence of the TME and emphasize the importance of understanding how metabolic performance drives cancer progression.


Asunto(s)
Neoplasias , Neoplasias Ováricas , Humanos , Femenino , Neoplasias/patología , Neoplasias Ováricas/tratamiento farmacológico , Células del Estroma/metabolismo , Comunicación Celular , Microambiente Tumoral , Citocinas/metabolismo
4.
Cancer Res ; 82(24): 4680-4693, 2022 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-36219681

RESUMEN

Ovarian clear cell carcinoma (OCCC) is a deadly and treatment-resistant cancer, which arises within the unique microenvironment of endometriosis. In this study, we identified a subset of endometriosis-derived mesenchymal stem cells (enMSC) characterized by loss of CD10 expression that specifically support OCCC growth. RNA sequencing identified alterations in iron export in CD10-negative enMSCs and reciprocal changes in metal transport in cocultured OCCC cells. CD10-negative enMSCs exhibited elevated expression of iron export proteins hephaestin and ferroportin and donate iron to associated OCCCs, functionally increasing the levels of labile intracellular iron. Iron is necessary for OCCC growth, and CD10-negative enMSCs prevented the growth inhibitory effects of iron chelation. In addition, enMSC-mediated increases in OCCC iron resulted in a unique sensitivity to ferroptosis. In vitro and in vivo, treatment with the ferroptosis inducer erastin resulted in significant death of cancer cells grown with CD10-negative enMSCs. Collectively, this work describes a novel mechanism of stromal-mediated tumor support via iron donation. This work also defines an important role of endometriosis-associated MSCs in supporting OCCC growth and identifies a critical therapeutic vulnerability of OCCC to ferroptosis based on stromal phenotype. SIGNIFICANCE: Endometriosis-derived mesenchymal stem cells support ovarian clear cell carcinoma via iron donation necessary for cancer growth, which also confers sensitivity to ferroptosis-inducing therapy.


Asunto(s)
Adenocarcinoma de Células Claras , Endometriosis , Células Madre Mesenquimatosas , Neoplasias Ováricas , Humanos , Femenino , Endometriosis/metabolismo , Endometriosis/patología , Neoplasias Ováricas/patología , Hierro , Adenocarcinoma de Células Claras/metabolismo , Células Madre Mesenquimatosas/metabolismo , Microambiente Tumoral
5.
JCI Insight ; 7(18)2022 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-35972817

RESUMEN

BACKGROUNDNew therapeutic combinations to improve outcomes of patients with ovarian cancer are clearly needed. Preclinical studies with ribociclib (LEE-011), a CDK4/6 cell cycle checkpoint inhibitor, demonstrate a synergistic effect with platinum chemotherapy and efficacy as a maintenance therapy after chemotherapy. We tested the safety and initial efficacy of ribociclib in combination with platinum-based chemotherapy in recurrent ovarian cancer.METHODSThis phase I trial combined weekly carboplatin and paclitaxel chemotherapy with ribociclib, followed by ribociclib maintenance in patients with recurrent platinum-sensitive ovarian cancer. Primary objectives were safety and maximum tolerated dose (MTD) of ribociclib when given with platinum and taxane chemotherapy. Secondary endpoints were response rate (RR) and progression-free survival (PFS).RESULTSThirty-five patients were enrolled. Patients had a mean of 2.5 prior lines of chemotherapy, and 51% received prior maintenance therapy with poly(ADP-ribose) polymerase inhibitors and/or bevacizumab. The MTD was 400 mg. The most common adverse events included anemia (82.9%), neutropenia (82.9%), fatigue (82.9%), and nausea (77.1%). The overall RR was 79.3%, with a stable disease rate of 18%, resulting in a clinical benefit rate of 96.6%. Median PFS was 11.4 months. RR and PFS did not differ based on the number of lines of prior chemotherapy or prior maintenance therapy.CONCLUSIONThis work demonstrates that the combination of ribociclib with chemotherapy in ovarian cancer is feasible and safe. With a clinical benefit rate of 97%, this work provides encouraging evidence of clinical efficacy in patients with recurrent platinum-sensitive disease.TRIAL REGISTRATIONClinicalTrials.gov NCT03056833.FUNDINGThis investigator-initiated trial was supported by Novartis, which provided drugs and funds for trial execution.


Asunto(s)
Neoplasias Ováricas , Inhibidores de Poli(ADP-Ribosa) Polimerasas , Aminopiridinas , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos , Bevacizumab/uso terapéutico , Carboplatino/efectos adversos , Femenino , Humanos , Recurrencia Local de Neoplasia/tratamiento farmacológico , Neoplasias Ováricas/terapia , Paclitaxel/uso terapéutico , Platino (Metal) , Purinas
6.
J Vis Exp ; (169)2021 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-33843939

RESUMEN

Ovarian cancer is characterized by early, diffuse metastasis with 70% of women having metastatic disease at the time of diagnosis. While elegant transgenic mouse models of ovarian cancer exist, these mice are expensive and take a long time to develop tumors. Intraperitoneal injection xenograft models lack human stroma and do not accurately model ovarian cancer metastasis. Even patient derived xenografts (PDX) do not fully recapitulate the human stromal microenvironment as serial PDX passages demonstrate significant loss of human stroma. The ability to easily model human ovarian cancer within a physiologically relevant stromal microenvironment is an unmet need. Here, the protocol presents an orthotopic ovarian cancer mouse model using human ovarian cancer cells combined with patient-derived carcinoma-associated mesenchymal stem cells (CA-MSCs). CA-MSCs are stromal progenitor cells, which drive the formation of the stromal microenvironment and support ovarian cancer growth and metastasis. This model develops early and diffuses metastasis mimicking clinical presentation. In this model, luciferase expressing ovarian cancer cells are mixed in a 1:1 ratio with CA-MSCs and injected into the ovarian bursa of NSG mice. Tumor growth and metastasis are followed serially over time using bioluminescence imaging. The resulting tumors grow aggressively and form abdominal metastases by 14 days post injection. Mice experienced significant decreases in body weight as a marker of systemic illness and increased disease burden. By day 30 post injection, mice met endpoint criteria of >10% body weight loss and necropsy confirmed intra-abdominal metastasis in 100% of mice and 60%-80% lung and parenchymal liver metastasis. Collectively, orthotopic engraftment of ovarian cancer cells and stroma cells generates tumors that closely mimic the early and diffuse metastatic behavior of human ovarian cancer. Furthermore, this model provides a tool to study the role of ovarian cancer cell: stroma cell interactions in metastatic progression.


Asunto(s)
Células Madre Mesenquimatosas/metabolismo , Neoplasias Ováricas/patología , Células del Estroma/metabolismo , Animales , Carcinoma Epitelial de Ovario/patología , Línea Celular Tumoral , Modelos Animales de Enfermedad , Femenino , Humanos , Células Madre Mesenquimatosas/patología , Ratones , Células del Estroma/patología , Ensayos Antitumor por Modelo de Xenoinjerto
7.
Cell Rep ; 33(10): 108473, 2020 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-33296650

RESUMEN

A role for cancer cell epithelial-to-mesenchymal transition (EMT) in cancer is well established. Here, we show that, in addition to cancer cell EMT, ovarian cancer cell metastasis relies on an epigenomic mesenchymal-to-epithelial transition (MET) in host mesenchymal stem cells (MSCs). These reprogrammed MSCs, termed carcinoma-associated MSCs (CA-MSCs), acquire pro-tumorigenic functions and directly bind cancer cells to serve as a metastatic driver/chaperone. Cancer cells induce this epigenomic MET characterized by enhancer-enriched DNA hypermethylation, altered chromatin accessibility, and differential histone modifications. This phenomenon appears clinically relevant, as CA-MSC MET is highly correlated with patient survival. Mechanistically, mirroring MET observed in development, MET in CA-MSCs is mediated by WT1 and EZH2. Importantly, EZH2 inhibitors, which are clinically available, significantly inhibited CA-MSC-mediated metastasis in mouse models of ovarian cancer.


Asunto(s)
Transición Epitelial-Mesenquimal/genética , Metástasis de la Neoplasia/genética , Neoplasias Ováricas/genética , Animales , Carcinoma Epitelial de Ovario/genética , Carcinoma Epitelial de Ovario/metabolismo , Carcinoma Epitelial de Ovario/patología , Diferenciación Celular/genética , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Proteína Potenciadora del Homólogo Zeste 2/genética , Epigenoma/genética , Epigenómica/métodos , Femenino , Expresión Génica/genética , Regulación Neoplásica de la Expresión Génica/genética , Humanos , Células Madre Mesenquimatosas/fisiología , Ratones , Ratones Endogámicos NOD , Neoplasias Ováricas/metabolismo , Neoplasias Ováricas/patología , Cultivo Primario de Células , Transducción de Señal/genética , Proteínas WT1/genética , Proteínas WT1/metabolismo
8.
Adv Exp Med Biol ; 1234: 31-42, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32040853

RESUMEN

The interactions between tumor cells and the non-malignant stromal and immune cells that make up the tumor microenvironment (TME) are critical to the pathophysiology of cancer. Mesenchymal stem cells (MSCs) are multipotent stromal stem cells found within most cancers and play a critical role influencing the formation and function of the TME. MSCs have been reported to support tumor growth through a variety of mechanisms including (i) differentiation into other pro-tumorigenic stromal components, (ii) suppression of the immune response, (iii) promotion of angiogenesis, (iv) enhancement of an epithelial-mesenchymal transition (EMT), (v) enrichment of cancer stem-like cells (CSC), (vi) increase in tumor cell survival, and (vii) promotion of tumor metastasis. In contrast, MSCs have also been reported to have antitumorigenic functions including (i) enhancement of the immune response, (ii) inhibition of angiogenesis, (iii) regulation of cellular signaling, and (iv) induction of tumor cell apoptosis. Although literature supporting both arguments exists, most studies point to MSCs acting in a cancer supporting role within the confines of the TME. Tumor-suppressive effects are observed when MSCs are used in higher ratios to tumor cells. Additionally, MSC function appears to be tissue type dependent and may rely on cancer education to reprogram a naïve MSC with antitumor effects into a cancer-educated or cancer-associated MSC (CA-MSC) which develops pro-tumorigenic function. Further work is required to delineate the complex crosstalk between MSCs and other components of the TME to accurately assess the impact of MSCs on cancer initiation, growth, and spread.


Asunto(s)
Células Madre Mesenquimatosas , Neoplasias , Microambiente Tumoral , Transición Epitelial-Mesenquimal , Humanos , Neoplasias/patología , Células Madre Neoplásicas/patología
9.
Stem Cells ; 37(2): 257-269, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30353617

RESUMEN

Carcinoma-associated mesenchymal stem cells (CA-MSCs) are critical stromal progenitor cells within the tumor microenvironment (TME). We previously demonstrated that CA-MSCs differentially express bone morphogenetic protein family members, promote tumor cell growth, increase cancer "stemness," and chemotherapy resistance. Here, we use RNA sequencing of normal omental MSCs and ovarian CA-MSCs to demonstrate global changes in CA-MSC gene expression. Using these expression profiles, we create a unique predictive algorithm to classify CA-MSCs. Our classifier accurately distinguishes normal omental, ovary, and bone marrow MSCs from ovarian cancer CA-MSCs. Suggesting broad applicability, the model correctly classifies pancreatic and endometrial cancer CA-MSCs and distinguishes cancer associated fibroblasts from CA-MSCs. Using this classifier, we definitively demonstrate ovarian CA-MSCs arise from tumor mediated reprograming of local tissue MSCs. Although cancer cells alone cannot induce a CA-MSC phenotype, the in vivo ovarian TME can reprogram omental or ovary MSCs to protumorigenic CA-MSCs (classifier score of >0.96). In vitro studies suggest that both tumor secreted factors and hypoxia are critical to induce the CA-MSC phenotype. Interestingly, although the breast cancer TME can reprogram bone marrow MSCs into CA-MSCs, the ovarian TME cannot, demonstrating for the first time that tumor mediated CA-MSC conversion is tissue and cancer type dependent. Together these findings (a) provide a critical tool to define CA-MSCs and (b) highlight cancer cell influence on distinct normal tissues providing powerful insights into the mechanisms underlying cancer specific metastatic niche formation. Stem Cells 2019;37:257-269.


Asunto(s)
Células Madre Mesenquimatosas/metabolismo , Neoplasias Ováricas/genética , Diferenciación Celular , Línea Celular Tumoral , Proliferación Celular , Femenino , Humanos , Neoplasias Ováricas/patología , Microambiente Tumoral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA