Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Proteomics Clin Appl ; : e202400018, 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38923810

RESUMEN

PURPOSE: Diabetic kidney disease (DKD) is a serious complication of diabetes mellitus and a leading cause of chronic kidney disease and end-stage renal disease. One potential mechanism underlying cellular dysfunction contributing to kidney disease is aberrant protein post-translational modifications. Lysine acetylation is associated with cellular metabolic flux and is thought to be altered in patients with diabetes and dysfunctional renal metabolism. EXPERIMENTAL DESIGN: A novel extraction and LC-MS/MS approach was adapted to quantify sites of lysine acetylation from formalin-fixed paraffin-embedded (FFPE) kidney tissue and from patients with DKD and non-diabetic donors (n = 5 and n = 7, respectively). RESULTS: Analysis of FFPE tissues identified 840 total proteins, with 225 of those significantly changing in patients with DKD. Acetylomic analysis quantified 289 acetylated peptides, with 69 of those significantly changing. Pathways impacted in DKD patients revealed numerous metabolic pathways, specifically mitochondrial function, oxidative phosphorylation, and sirtuin signaling. Differential protein acetylation in DKD patients impacted sirtuin signaling, valine, leucine, and isoleucine degradation, lactate metabolism, oxidative phosphorylation, and ketogenesis. CONCLUSIONS AND CLINICAL RELEVANCE: A quantitative acetylomics platform was developed for protein biomarker discovery in formalin-fixed and paraffin-embedded biopsies of kidney transplant patients suffering from DKD.

2.
Adv Redox Res ; 52022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38273965

RESUMEN

Extracellular superoxide dismutase (EC-SOD) is highly expressed in the lung and vasculature. A common human single nucleotide polymorphism (SNP) in the matrix binding region of EC-SOD leads to a single amino acid substitution, R213G, and alters EC-SOD tissue binding affinity. The change in tissue binding affinity redistributes EC-SOD from tissue to extracellular fluids. Mice (R213G mice) expressing a knock-in of this EC-SOD SNP exhibit elevated plasma and reduced lung EC-SOD content and activity and are protected against bleomycin-induced lung injury and inflammation. It is unknown how the redistribution of EC-SOD alters site-specific redox-regulated molecules relevant for protection. In this study, we tested the hypothesis that the change in the local EC-SOD content would influence not only the extracellular redox microenvironment where EC-SOD is localized but also protect the intracellular redox status of the lung. Mice were treated with bleomycin and harvested 7 days post-treatment. Superoxide levels, measured by electron paramagnetic resonance (EPR), were lower in plasma and Bronchoalveolar lavage fluid (BALF) cells in R213G mice compared to wild-type (WT) mice, while lung cellular superoxide levels in R213G mice were not elevated post-bleomycin compared to WT mice despite low lung EC-SOD levels. Lung glutathione redox potential (EhGSSG), determined by HPLC and fluorescence, was more oxidized in WT compared to R213G mice. In R213G mice, lung mitochondrial oxidative stress was reduced shown by mitochondrial superoxide level measured by EPR in lung and the resistance to bleomycin-induced cardiolipin oxidation. Bleomycin treatment suppressed mitochondrial respiration in WT mice. Mitochondrial function was impaired at baseline in R213G mice but did not exhibit further suppression in respiration post-bleomycin. Collectively, the results indicate that R213G variant preserves intracellular redox state and protects mitochondrial function in the setting of bleomycin-induced inflammation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...