Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 5514, 2024 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-38448548

RESUMEN

In recent decades, we have seen significant technical progress in the modern world, leading to the widespread use of telecommunications systems, electrical appliances, and wireless technologies. These devices generate electromagnetic radiation (EMR) and electromagnetic fields (EMF) most often in the extremely low frequency or radio-frequency range. Therefore, they were included in the group of environmental risk factors that affect the human body and health on a daily basis. In this study, we tested the effect of exposure EMF generated by a new prototype wireless charging system on four human cell lines (normal cell lines-HDFa, NHA; tumor cell lines-SH-SY5Y, T98G). We tested different operating parameters of the wireless power transfer (WPT) device (87-207 kHz, 1.01-1.05 kW, 1.3-1.7 mT) at different exposure times (pulsed 6 × 10 min; continuous 1 × 60 min). We observed the effect of EMF on cell morphology and cytoskeletal changes, cell viability and mitotic activity, cytotoxicity, genotoxicity, and oxidative stress. The results of our study did not show any negative effect of the generated EMF on either normal cells or tumor cell lines. However, in order to be able to estimate the risk, further population and epidemiological studies are needed, which would reveal the clinical consequences of EMF impact.


Asunto(s)
Campos Electromagnéticos , Neuroblastoma , Humanos , Campos Electromagnéticos/efectos adversos , Neuronas , Línea Celular Tumoral , Supervivencia Celular
2.
Sci Rep ; 14(1): 1191, 2024 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-38216570

RESUMEN

This paper focuses on the operational analysis of wireless power transfer (WPT) system, while the topology of the secondary side rectifier represents the main element, for which the properties of WPT system are being investigated. Initially the system description and technical specifications are given. Because WPT systems are designed for a certain type and value of the load (impedance matching) in order to achieve the highest possible efficiency, the definitions for those values are identified for individual topologies of the secondary side rectifiers. Consequently, the results are compared and discussed and followed by the simulation analysis to prove the operational behavior in time-domain for each of investigated alternative of rectifier. Several relationships have been identified in relation to secondary side electrical variables, and discussion for stress-optimization are given as well. The simulation results are verified by the experimental measurements, while individual solutions for secondary side rectifiers are evaluated from efficiency point of view followed by the recommendations of the operational conditions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...