Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Front Vet Sci ; 11: 1356318, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38638644

RESUMEN

Introduction: Bloodwork is a widely used diagnostic tool in veterinary medicine, as diagnosis and therapeutic interventions often rely on blood biomarkers. However, biomarkers available in veterinary medicine often lack sensitivity or specificity. Mass spectrometry-based proteomics technology has been extensively used in the analysis of biological fluids. It offers excellent potential for a more comprehensive characterization of the plasma proteome in veterinary medicine. Methods: In this study, we aimed to identify and quantify plasma proteins in a cohort of healthy dogs and compare two techniques for depleting high-abundance plasma proteins to enable the detection of lower-abundance proteins via label-free quantification liquid chromatography-mass spectrometry. We utilized surplus lithium-heparin plasma from 30 healthy dogs, subdivided into five groups of pooled plasma from 6 randomly selected individuals each. Firstly, we used a commercial kit to deplete high-abundance plasma proteins. Secondly, we employed an in-house method to remove albumin using Blue-Sepharose. Results and discussion: Among all the samples, some of the most abundant proteins identified were apolipoprotein A and B, albumin, alpha-2-macroglobulin, fibrinogen beta chain, fibronectin, complement C3, serotransferrin, and coagulation factor V. However, neither of the depletion techniques achieved significant depletion of highly abundant proteins. Despite this limitation, we could detect and quantify many clinically relevant proteins. Determining the healthy canine proteome is a crucial first step in establishing a reference proteome for canine plasma. After enrichment, this reference proteome can later be utilized to identify protein markers associated with different diseases, thereby contributing to the diagnosis and prognosis of various pathologies.

2.
PLoS One ; 19(2): e0297924, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38330002

RESUMEN

Acute haemorrhagic diarrhoea is a common complaint in dogs. In addition to causes like intestinal parasites, dietary indiscretion, intestinal foreign bodies, canine parvovirus infection, or hypoadrenocorticism, acute haemorrhagic diarrhoea syndrome (AHDS) is an important and sometimes life-threatening differential diagnosis. There is some evidence supporting the link between Clostridium perfringens toxins and AHDS. These toxins may be partially responsible for the epithelial cell injury, but the pathogenesis of AHDS is still not fully understood. Recent studies have suggested that severe damage to the intestinal mucosa and associated barrier dysfunction can trigger chronic gastrointestinal illnesses. Besides bloodwork and classical markers for AHDS such as protein loss and intestinal bacterial dysbiosis, we focused mainly on the plasma-proteome to identify systemic pathological alterations during this disease and searched for potential biomarkers to improve the diagnosis. To accomplish the goals, we used liquid chromatography-mass spectrometry. We compared the proteomic profiles of 20 dogs with AHDS to 20 age-, breed-, and sex-matched control dogs. All dogs were examined, and several blood work parameters were determined and compared, including plasma biochemistry and cell counts. We identified and quantified (relative quantification) 207 plasmatic proteins, from which dozens showed significantly altered levels in AHDS. Serpina3, Lipopolysaccharide-binding protein, several Ig-like domain-containing proteins, Glyceraldehyde-3-phosphate dehydrogenase and Serum amyloid A were more abundant in plasma from AHDS affected dogs. In contrast, other proteins such as Paraoxonase, Selenoprotein, Amine oxidases, and Apolipoprotein C-IV were significantly less abundant. Many of the identified and quantified proteins are known to be associated with inflammation. Other proteins like Serpina3 and RPLP1 have a relevant role in oncogenesis. Some proteins and their roles have not yet been described in dogs with diarrhoea. Our study opens new avenues that could contribute to the understanding of the aetiology and pathophysiology of AHDS.


Asunto(s)
Enfermedades de los Perros , Proteoma , Perros , Animales , Proteómica , Hemorragia Gastrointestinal/microbiología , Síndrome , Diarrea/microbiología , Enfermedades de los Perros/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...