RESUMEN
Surface modification with heparin is a powerful biomaterial coating strategy that protects against innate immunity activation since heparin is a part of the proteoglycan heparan sulfate on cell surfaces in the body. We studied the heparinization of cellular and material surfaces via lipid conjugation to a heparin-binding peptide. In the present study, we synthesized fragmented heparin (fHep)-conjugated phospholipids and studied their regulation of the innate immune system on a lipid bilayered surface using liposomes. Liposomes have versatile applications, such as drug-delivery systems, due to their ability to carry a wide range of molecules. Owing to their morphological similarity to cell membranes, they can also be used to mimic a simple cell-membrane to study protein-lipid interactions. We investigated the interaction of complement-regulators, factor H and C4b-binding protein (C4BP), as well as the coagulation inhibitor antithrombin (AT), with fHep-lipids on the liposomal surface. Herein, we studied the ability of fHep-lipids to recruit factor H, C4BP, and AT using a quartz crystal microbalance with dissipation monitoring. With dynamic light scattering, we demonstrated that liposomes could be modified with fHep-lipids and were stable up to 60 days at 4 °C. Using a capillary western blot-based method (Wes), we showed that fHep-liposomes could recruit factor H in a model system using purified proteins and assist in the degradation of the active complement protein C3b to iC3b. Furthermore, we found that fHep-liposomes could recruit factor H and AT from human plasma. Therefore, the use of fHep-lipids could be a potential coating for liposomes and cell surfaces to regulate the immune system on the lipid surface.
Asunto(s)
Heparina , Liposomas , Humanos , Liposomas/química , Factor H de Complemento , Membrana Dobles de Lípidos , Antitrombinas/farmacología , Anticoagulantes , Sistema Inmunológico/metabolismoRESUMEN
Aortic valve degeneration (AVD) is a life-threatening condition that has no medical treatment and lacks individual therapies. Although extensively studied with standard approaches, aetiologies behind AVD are unclear. We compared abundances of extracellular matrix (ECM) proteins from excised valve tissues of 88 patients with isolated AVD of normal tricuspid (TAV) and congenital bicuspid aortic valves (BAV), quantified more than 1400 proteins per ECM sample by mass spectrometry, and demonstrated that local ECM preserves molecular cues of the pathophysiological processes. The BAV ECM showed enrichment with fibrosis markers, namely Tenascin C, Osteoprotegerin, and Thrombospondin-2. The abnormal physical stress on BAV may cause a mechanical injury leading to a continuous Tenascin C-driven presence of myofibroblasts and persistent fibrosis. The TAV ECM exhibited enrichment with Annexin A3 (p = 1.1 × 10-16 and the fold change 6.5) and a significant deficit in proteins involved in high-density lipid metabolism. These results were validated by orthogonal methods. The difference in the ECM landscape suggests distinct aetiologies between AVD of BAV and TAV; warrants different treatments of the patients with BAV and TAV; elucidates the molecular basis of AVD; and implies possible new therapeutic approaches. Our publicly available database (human_avd_ecm.surgsci.uu.se) is a rich source for medical doctors and researchers who are interested in AVD or heart ECM in general. Systematic proteomic analysis of local ECM using the methods described here may facilitate future studies of various tissues and organs in development and disease.
Asunto(s)
Válvula Aórtica , Tenascina , Humanos , Proteómica , Matriz Extracelular , AortaRESUMEN
BACKGROUND: Several studies have shown the importance of the complement and coagulation systems in the pathogenesis of asthma. OBJECTIVES: We explored whether we could detect differentially abundant complement and coagulation proteins in the samples obtained from the small airway lining fluid by collection of exhaled particles in patients with asthma and whether these proteins are associated with small airway dysfunction and asthma control. METHOD: Exhaled particles were obtained from 20 subjects with asthma and 10 healthy controls (HC) with the PExA method and analysed with the SOMAscan proteomics platform. Lung function was assessed by nitrogen multiple breath washout test and spirometry. RESULTS: 53 proteins associated with the complement and coagulation systems were included in the analysis. Nine of those proteins were differentially abundant in subjects with asthma as compared to HC, and C3 was significantly higher in inadequately controlled asthma as compared to well-controlled asthma. Several proteins were associated with physiological tests assessing small airways. CONCLUSIONS: The study highlights the role of the local activation of the complement and coagulation systems in the small airway lining fluid in asthma and their association with both asthma control and small airway dysfunction. The findings highlight the potential of complement factors as biomarkers to identify different sub-groups among patients with asthma that could potentially benefit from a therapeutic approach targeting the complement system.
Asunto(s)
Asma , Coagulación Sanguínea , Bronquiolos , Activación de Complemento , Alveolos Pulmonares , Asma/sangre , Asma/inmunología , Asma/fisiopatología , Humanos , Masculino , Femenino , Persona de Mediana Edad , Alveolos Pulmonares/inmunología , Alveolos Pulmonares/fisiopatología , Bronquiolos/inmunología , Bronquiolos/fisiopatologíaRESUMEN
Background: Dysregulated complement activation, increased protein citrullination, and production of autoantibodies against citrullinated proteins are hallmarks of rheumatoid arthritis (RA). Citrullination is induced by immune cell-derived peptidyl-Arg deiminases (PADs), which are overactivated in the inflamed synovium. We characterized the effect of PAD2- and PAD4-induced citrullination on the ability of the plasma-derived serpin C1-inhibitor (C1-INH) to inhibit complement and contact system activation. Methods: Citrullination of the C1-INH was confirmed by ELISA and Western blotting using a biotinylated phenylglyoxal probe. C1-INH-mediated inhibition of complement activation was analyzed by C1-esterase activity assay. Downstream inhibition of complement was studied by C4b deposition on heat-aggregated IgGs by ELISA, using pooled normal human serum as a complement source. Inhibition of the contact system was investigated by chromogenic activity assays for factor XIIa, plasma kallikrein, and factor XIa. In addition, autoantibody reactivity to native and citrullinated C1-INH was measured by ELISA in 101 RA patient samples. Results: C1-INH was efficiently citrullinated by PAD2 and PAD4. Citrullinated C1-INH was not able to bind the serine protease C1s and inhibit its activity. Citrullination of the C1-INH abrogated its ability to dissociate the C1-complex and thus inhibit complement activation. Consequently, citrullinated C1-INH had a decreased capacity to inhibit C4b deposition via the classical and lectin pathways. The inhibitory effect of C1-INH on the contact system components factor XIIa, plasma kallikrein, and factor XIa was also strongly reduced by citrullination. In RA patient samples, autoantibody binding to PAD2- and PAD4-citrullinated C1-INH was detected. Significantly more binding was observed in anti-citrullinated protein antibody (ACPA)-positive than in ACPA-negative samples. Conclusion: Citrullination of the C1-INH by recombinant human PAD2 and PAD4 enzymes impaired its ability to inhibit the complement and contact systems in vitro. Citrullination seems to render C1-INH more immunogenic, and citrullinated C1-INH might thus be an additional target of the autoantibody response observed in RA patients.
Asunto(s)
Artritis Reumatoide , Citrulinación , Humanos , Desiminasas de la Arginina Proteica/genética , Factor XIIa/metabolismo , Calicreína Plasmática/metabolismo , Factor XIa , Proteínas/metabolismo , AutoanticuerposRESUMEN
A better understanding of the mechanisms behind adverse health effects caused by airborne fine particles and nanoparticles (NP) is essential to improve risk assessment and identification the most critical particle exposures. While the use of automobile catalytic converters is decreasing the exhausts of harmful gases, concentrations of fine airborne particles and nanoparticles (NPs) from catalytic metals such as Palladium (Pd) are reaching their upper safe level. Here we used a combinatory approach with three in vitro model systems to study the toxicity of Pd particles, to infer their potential effects on human health upon inhalation. The three model systems are 1) a lung system with human lung cells (ALI), 2) an endothelial cell system and 3) a human whole blood loop system. All three model systems were exposed to the exact same type of Pd NPs. The ALI lung cell exposure system showed a clear reduction in cell growth from 24 h onwards and the effect persisted over a longer period of time. In the endothelial cell model, Pd NPs induced apoptosis, but not to the same extent as the most aggressive types of NPs such as TiO2. Similarly, Pd triggered clear coagulation and contact system activation but not as forcefully as the highly thrombogenic TiO2 NPs. In summary, we show that our 3-step in vitro model of the human lung and surrounding vessels can be a useful tool for studying pathological events triggered by airborne fine particles and NPs.
Asunto(s)
Nanopartículas del Metal , Nanopartículas , Humanos , Paladio/toxicidad , Nanopartículas del Metal/toxicidad , Pulmón/metabolismo , Nanopartículas/toxicidad , EndotelioRESUMEN
A number of clinical treatment modalities involve contact between blood and biomaterials: these include extracorporeal circuits such as hemodialysis, cardiopulmonary bypass, plasmapheresis, and intravascular treatments. Common side effects arising from these treatments are caused by activation of the cascade systems of the blood. Many of these side effects are mediated via the complement system, including thromboinflammatory reactions and rejection of implants. Depending on the composition of the materials, complement activation is triggered via all the activation pathways but is by far mostly driven by the alternative pathway amplification loop. On biomaterial surfaces the alternative pathway amplification is totally unregulated and leads under optimal conditions to deposition of complement fragments, mostly C3b, on the surface leading to a total masking of the underlying surface. In this review, we discuss the mechanism of the complement activation, clinical consequences of the activation, and potential strategies for therapeutic regulation of the activation, using hemodialysis as demonstrator.
Asunto(s)
Activación de Complemento , Proteínas del Sistema Complemento , Humanos , Vía Alternativa del ComplementoRESUMEN
Hypercoagulation and endothelial dysfunction play central roles in severe forms of COVID-19 infections, but the molecular mechanisms involved are unclear. Increased plasma levels of the inflammatory cytokine and TIE2 receptor antagonist Angiopoietin-2 were reported in severely ill COVID-19 patients. In vitro experiments suggest that Angiopoietin-2 bind and inhibits thrombomodulin. Thrombomodulin is expressed on the luminal surface of endothelial cells where it is an important member of the intrinsic anticoagulant pathway through activation of protein C. Using clinical data, mouse models, and in vitro assays, we tested if Angiopoietin-2 plays a causal role in COVID-19-associated hypercoagulation through direct inhibition of thrombin/thrombomodulin-mediated physiological anticoagulation. Angiopoietin-2 was measured in 61 patients at admission, and after 10 days in the 40 patients remaining in the ICU. We found that Angiopoietin-2 levels were increased in COVID-19 patients in correlation with disease severity, hypercoagulation, and mortality. In support of a direct effect of Angiopoietin-2 on coagulation, we found that injected Angiopoietin-2 in mice associated to thrombomodulin and resulted in a shortened tail bleeding time, decreased circulating levels of activated protein C, and increased plasma thrombin/antithrombin complexes. Conversely, bleeding time was increased in endothelial-specific Angiopoietin-2 knockout mice, while knockout of Tie2 had no effect on tail bleeding. Using in vitro assays, we found that Angiopoietin-2 inhibited thrombomodulin-mediated anticoagulation and protein C activation in human donor plasma. Our data suggest a novel in vivo mechanism for Angiopoietin-2 in COVID-19-associated hypercoagulation, implicating that Angiopoietin-2 inhibitors may be effective in the treatment of hypercoagulation in severe COVID-19 infection.
RESUMEN
Complement components have a reputation to be very labile. One of the reasons for this is the spontaneous hydrolysis of the internal thioester that is found in both C3 and C4 (but not in C5). Despite the fact that ≈20,000 papers have been published on human C3 there is still no reliable method to store the protein without generating C3(H2O), a fact that may have affected studies of the conformation and function of C3, including recent studies on intracellular C3(H2O). The aim of this work was to define the conditions for storage of native C3 and to introduce a robust method that makes C3 almost resistant to the generation of C3(H2O). Here, we precipitated native C3 at the isoelectric point in low ionic strength buffer before freezing the protein at -80°C. The formation of C3(H2O) was determined using cation exchange chromatography and the hemolytic activity of the different C3 preparations was determined using a hemolytic assay for the classical pathway. We show that freezing native C3 in the precipitated form is the best method to avoid loss of function and generation of C3(H2O). By contrast, the most efficient way to consistently generate C3(H2O) was to incubate native C3 in a buffer at pH 11.0. We conclude that we have defined the optimal storage conditions for storing and maintaining the function of native C3 without generating C3(H2O) and also the conditions for consistently generating C3(H2O).
Asunto(s)
Complemento C3 , Hemólisis , Complemento C3/metabolismo , Humanos , HidrólisisRESUMEN
Most SARS-CoV-2 infected patients experience influenza-like symptoms of low or moderate severity. But, already in 2020 early during the pandemic it became obvious that many patients had a high incidence of thrombotic complications, which prompted treatment with high doses of low-molecular-weight heparin (LMWH; typically 150-300IU/kg) to prevent thrombosis. In some patients, the disease aggravated after approximately 10 days and turned into a full-blown acute respiratory distress syndrome (ARDS)-like pulmonary inflammation with endothelialitis, thrombosis and vascular angiogenesis, which often lead to intensive care treatment with ventilator support. This stage of the disease is characterized by dysregulation of cytokines and chemokines, in particular with high IL-6 levels, and also by reduced oxygen saturation, high risk of thrombosis, and signs of severe pulmonary damage with ground glass opacities. The direct link between SARS-CoV-2 and the COVID-19-associated lung injury is not clear. Indirect evidence speaks in favor of a thromboinflammatory reaction, which may be initiated by the virus itself and by infected damaged and/or apoptotic cells. We and others have demonstrated that life-threatening COVID-19 ARDS is associated with a strong activation of the intravascular innate immune system (IIIS). In support of this notion is that activation of the complement and kallikrein/kinin (KK) systems predict survival, the necessity for usage of mechanical ventilation, acute kidney injury and, in the case of MBL, also coagulation system activation with thromboembolism. The general properties of the IIIS can easily be translated into mechanisms of COVID-19 pathophysiology. The prognostic value of complement and KKsystem biomarkers demonstrate that pharmaceuticals, which are licensed or have passed the phase I trial stage are promising candidate drugs for treatment of COVID-19. Examples of such compounds include complement inhibitors AMY-101 and eculizumab (targeting C3 and C5, respectively) as well as kallikrein inhibitors ecallantide and lanadelumab and the bradykinin receptor (BKR) 2 antagonist icatibant. In this conceptual review we discuss the activation, crosstalk and the therapeutic options that are available for regulation of the IIIS.
Asunto(s)
COVID-19 , Síndrome de Dificultad Respiratoria , Trombosis , COVID-19/complicaciones , Heparina de Bajo-Peso-Molecular/uso terapéutico , Humanos , Sistema Inmunológico , Calicreínas , Síndrome de Dificultad Respiratoria/etiología , Síndrome de Dificultad Respiratoria/terapia , SARS-CoV-2 , Trombosis/tratamiento farmacológicoRESUMEN
COVID-19 has been shown to have a multifaceted impact on the immune system. In a recently published article in Front Immunol, we show that the intravascular innate immune system (IIIS) is strongly activated in severe COVID-19 with ARDS and appears to be one of the causes leading to severe COVID-19. In this article, we describe the IIIS and its physiological function, but also the strong pro-inflammatory effects that are observed in COVID-19 and in various other pathological conditions and treatments such as during ischemia reperfusion injury and in treatments where biomaterials come in direct contact with blood in, e.g., extracorporeal and intravasal treatments. In the present article, we describe how the IIIS, a complex network of plasma proteins and blood cells, constitute the acute innate immune response of the blood and discuss the effects that the IIIS induces in pathological disorders and treatments in modern medicine.
Asunto(s)
COVID-19 , Humanos , Inmunidad Innata , Sistema InmunológicoRESUMEN
INTRODUCTION: Cigarette smoke triggers many cellular and signaling responses in the lung and the resulting inflammation plays a central role in smoke-related lung diseases, such as COPD. We explored the effects of smoking on the small airway proteome in samples obtained by collection of exhaled particles with the aim to identify specific proteins dysregulated by smoking. METHODS: Exhaled particles were obtained from 38 current smokers, 47 former smokers and 22 healthy controls with the PExA method. 120 ng of sample was collected from individual subjects and analyzed with the SOMAscan proteomics platform. General linear model-based statistics were performed. RESULTS: Two hundred and three proteins were detected in at least half of 107 total samples. Active smoking exerted a significant impact on the protein composition of respiratory tract lining fluid (RTLF), with 81 proteins altered in current smokers compared to never smokers (p < 0.05, q < 0.124). Among the proteins most clearly discriminating between current and never smokers were sRAGE, FSTL3, SPOCK2 and protein S, all of them being less abundant in current smokers. Analysis stratified for sex unveiled sex differences with more pronounced proteomic alterations due to active smoking in females than males. Proteins whose abundance was altered by active smoking in women were to a larger extent related to the complement system. The small airway protein profile of former smokers appeared to be more similar to that observed in never smokers. CONCLUSIONS: The study shows that smoking has a strong impact on protein expression in the small airways, and that smoking affects men and women differently, suggesting PExA sampling combined with high sensitivity protein analysis offers a promising platform for early detection of COPD and identification of novel COPD drug targets.
Asunto(s)
Fumar Cigarrillos/metabolismo , Pulmón/metabolismo , Proteómica/métodos , Caracteres Sexuales , Fumadores , Fumar Tabaco/genética , Fumar Cigarrillos/genética , Fumar Cigarrillos/patología , Estudios de Cohortes , Femenino , Humanos , Pulmón/patología , Masculino , Persona de Mediana Edad , Espirometría/métodos , Fumar Tabaco/metabolismo , Fumar Tabaco/patologíaRESUMEN
In order to develop a new type of improved wound dressing, we combined the wound healing properties of nanotitania with the advantageous dressing properties of nanocellulose to create three different hybrid materials. The hemocompatibility of the synthesized hybrid materials was evaluated in an in vitro human whole blood model. To our knowledge, this is the first study of the molecular interaction between hybrid nanotitania and blood proteins. Two of the hybrid materials prepared with 3 nm colloidal titania and 10 nm hydrothermally synthesized titania induced strong coagulation and platelet activation but negligible complement activation. Hence, they have great potential as a new dressing for promoting wound healing. Unlike the other two, the third hybrid material using molecular ammonium oxo-lactato titanate as a titania source inhibited platelet consumption, TAT generation, and complement activation, apparently via lowered pH at the surface interface. It is therefore suitable for applications where a passivating surface is desired, such as drug delivery systems and extracorporeal circuits. This opens the possibility for a tailored blood response through the surface functionalization of titania.
RESUMEN
An important manifestation of severe COVID-19 is the ARDS-like lung injury that is associated with vascular endothelialitis, thrombosis, and angiogenesis. The intravascular innate immune system (IIIS), including the complement, contact, coagulation, and fibrinolysis systems, which is crucial for recognizing and eliminating microorganisms and debris in the body, is likely to be involved in the pathogenesis of COVID-19 ARDS. Biomarkers for IIIS activation were studied in the first 66 patients with COVID-19 admitted to the ICU in Uppsala University Hospital, both cross-sectionally on day 1 and in 19 patients longitudinally for up to a month, in a prospective study. IIIS analyses were compared with biochemical parameters and clinical outcome and survival. Blood cascade systems activation leading to an overreactive conjunct thromboinflammation was demonstrated, reflected in consumption of individual cascade system components, e.g., FXII, prekallikrein, and high molecular weight kininogen and in increased levels of activation products, e.g., C4d, C3a, C3d,g, sC5b-9, TAT, and D-dimer. Strong associations were found between the blood cascade systems and organ damage, illness severity scores, and survival. We show that critically ill COVID-19 patients display a conjunct activation of the IIIS that is linked to organ damage of the lung, heart, kidneys, and death. We present evidence that the complement and in particular the kallikrein/kinin system is strongly activated and that both systems are prognostic markers of the outcome of the patients suggesting their role in driving the inflammation. Already licensed kallikrein/kinin inhibitors are potential drugs for treatment of critically ill patients with COVID-19.
Asunto(s)
COVID-19/inmunología , COVID-19/metabolismo , Inflamación/inmunología , Sistema Calicreína-Quinina/inmunología , Trombosis/inmunología , Adulto , Anciano , Anciano de 80 o más Años , Biomarcadores/metabolismo , Coagulación Sanguínea , COVID-19/patología , COVID-19/virología , Enfermedad Crítica , Femenino , Fibrinólisis/inmunología , Humanos , Inmunidad Innata , Inflamación/metabolismo , Inflamación/patología , Inflamación/virología , Masculino , Persona de Mediana Edad , Estudios Prospectivos , Síndrome de Dificultad Respiratoria/inmunología , Síndrome de Dificultad Respiratoria/metabolismo , Síndrome de Dificultad Respiratoria/patología , Síndrome de Dificultad Respiratoria/virología , SARS-CoV-2/aislamiento & purificación , Índice de Severidad de la Enfermedad , Adulto JovenRESUMEN
The regulation of the cellular surface with biomaterials can contribute to the progress of biomedical applications. In particular, the cell surface is exposed to immunological surveillance and reactions in transplantation therapy, and modulation of cell surface properties might improve transplantation outcomes. The transplantation of therapeutic cells, tissue, and organs is an effective and fundamental treatment and has contributed to saving lives and improving quality of life. Because of shortages, donor cells, tissues, and organs are carefully transplanted with the goal of retaining activity and viability. However, some issues remain to be resolved in terms of reducing side effects, improving graft survival, managing innate and adaptive immune responses, and improving transplant storage and procedures. Given that the transplantation process involves multiple steps and is technically complicated, an engineering approach together with medical approaches to resolving these issues could enhance success. In particular, cell surface engineering with biocompatible polymers looks promising for improving transplantation therapy and has potential for other biomedical applications. Here we review the significance of polymer-based surface modification of cells and organs for biomedical applications, focusing on the following three topics: Cell protection: cellular protection through local immune regulation using cell surface modification with biocompatible polymers. This protection could extend to preventing attack by the host immune system, freeing recipients from taking immunosuppressive drugs, and avoiding a second transplantation. Cell attachment: cell manipulation, which is an important technique for delivery of therapeutic cells and their alignment for recellularization of decellularized tissues and organs in regenerative therapy. Cell fusion: fusion of different cells, which can lead to the formation of new functional cells that could be useful for generating, e.g., immunologically competent or metabolically active cells.
Asunto(s)
Polímeros , Calidad de Vida , Materiales Biocompatibles , Propiedades de Superficie , Ingeniería de TejidosRESUMEN
In this study we investigate the hydrolysis of C3 to C3(H2O) and its ability to initiate activation via the alternative pathway (AP) of the complement system. The internal thioester bond within C3 is hydrolyzed by water in plasma because of its inherent lability. This results in the formation of non-proteolytically activated C3(H2O) which is believed have C3b-like properties and be able to form an active initial fluid phase C3 convertase together with Factor B (FB). The generation of C3(H2O) occurs at a low but constant rate in blood, but the formation can be greatly accelerated by the interaction with various surfaces or nucleophilic and chaotropic agents. In order to more specifically elucidate the relevance of the C3(H2O) for AP activation, formation was induced in solution by repeated freeze/thawing, methylamine or KCSN treatment and named C3(x) where the x can be any of the reactive nucleophilic or chaotropic agents. Isolation and characterization of C3(x) showed that it exists in several forms with varying attributes, where some have more C3b-like properties and can be cleaved by Factor I in the presence of Factor H. However, in common for all these variants is that they are less active partners in initial formation of the AP convertase compared with the corresponding activity of C3b. These observations support the idea that formation of C3(x) in the fluid phase is not a strong initiator of the AP. It is rather likely that the AP mainly acts as an amplification mechanism of complement activation that is triggered by deposition of target-bound C3b molecules generated by other means.
Asunto(s)
Activación de Complemento/fisiología , Complemento C3/metabolismo , Vía Alternativa del Complemento/fisiología , Complemento C3/química , Humanos , HidrólisisRESUMEN
In the alternative pathway (AP) an amplification loop is formed, which is strictly controlled by various fluid-phase and cell-bound regulators resulting in a state of homeostasis. Generation of the "C3b-like" C3(H2O) has been described as essential for AP activation, since it conveniently explains how the initial fluid-phase AP convertase of the amplification loop is generated. Also, the AP has a status of being an unspecific pathway despite thorough regulation at different surfaces. During complement attack in pathological conditions and inflammation, large amounts of C3b are formed by the classical/lectin pathway (CP/LP) convertases. After the discovery of LP´s recognition molecules and its tight interaction with the AP, it is increasingly likely that the AP acts in vivo mainly as a powerful amplification mechanism of complement activation that is triggered by previously generated C3b molecules initiated by the binding of specific recognition molecules. Also in many pathological conditions caused by a dysregulated AP amplification loop such as paroxysmal nocturnal hemoglobulinuria (PNH) and atypical hemolytic uremic syndrome (aHUS), C3b is available due to minute LP and CP activation and/or generated by non-complement proteases. Therefore, C3(H2O) generation in vivo may be less important for AP activation during specific attack or dysregulated homeostasis, but may be an important ligand for C3 receptors in cell-cell interactions and a source of C3 for the intracellular complement reservoir.
Asunto(s)
Activación de Complemento/inmunología , Complemento C3b/inmunología , Vía Alternativa del Complemento/inmunología , Animales , Homeostasis , HumanosRESUMEN
In this review article, we focus on activation of the soluble components of the innate immune system triggered by nonbiological compounds and stress variances in activation due to the difference in size between nanoparticles (NPs) and larger particles or bulk material of the same chemical and physical composition. We then discuss the impact of the so-called protein corona which is formed on the surface of NPs when they come in contact with blood or other body fluids. For example, NPs which bind inert proteins, proteins which are prone to activate the contact system (e.g., factor XII), which may lead to clotting and fibrin formation or the complement system (e.g., IgG or C3), which may result in inflammation and vascular damage. Furthermore, we describe a whole blood model which we have developed to monitor activation and interaction between different components of innate immunity: blood protein cascade systems, platelets, leukocytes, cytokine generation, which are induced by NPs. Finally, we describe our own studies on innate immunity system activation induced by three fundamentally different species of NPs (two types of engineered NPs and diesel NPs) as demonstrator of the utility of an initial determination of the composition of the protein corona formed on NPs exposed to ethylenediaminetetraacetic acid (EDTA) plasma and subsequent analysis in our whole blood model.
RESUMEN
Escherichia coli-induced hemolytic uremic syndrome (eHUS) is a life-threatening complication of infection with Shiga toxin (Stx), in particular Stx2a-producing Escherichia coli. Enhanced coagulation activation with formation of microthrombi seems to be a key event in development of eHUS. Platelet activation has been postulated as a possible, but controversially debated mechanism. The present study investigated the effect of Stx2a on plasmatic coagulation and platelets. Binding studies were initially performed with ELISA and co-immunoprecipitation and supported by quartz crystal microbalance with dissipation monitoring (QCM-D). Antithrombin (AT) activity was measured using the automated BCS XP® system. ROTEM® was used for functional coagulation testing. Platelet binding and activation was studied with FACS and light-transmission aggregometry. We found binding of Stx2a to AT, an important inhibitor of blood coagulation, but only a mild albeit significant reduction of AT activity against FXa in the presence of Stx2a. QCM-D analysis also showed binding of Stx2a to heparin and an impaired binding of AT to Stx2a-bound heparin. ROTEM® using Stx2a-treated platelet-poor plasma revealed a significant, but only moderate shortening of clotting time. Neither binding nor activation of platelets by Stx2a could be demonstrated. In summary, data of this study suggest that Stx2a binds to AT, but does not induce major effects on plasmatic coagulation. In addition, no interaction with platelets occurred. The well-known non-beneficial administration of heparin in eHUS patients could be explained by the interaction of Stx2a with heparin.
Asunto(s)
Antitrombinas/metabolismo , Coagulación Sanguínea/fisiología , Heparina/metabolismo , Agregación Plaquetaria/inmunología , Toxina Shiga II/metabolismo , Plaquetas/inmunología , Síndrome Hemolítico-Urémico/microbiología , Humanos , Unión Proteica/fisiología , Escherichia coli Shiga-Toxigénica/patogenicidadRESUMEN
A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has not been fixed in the paper.
RESUMEN
Activation and regulation of the cascade systems of the blood (the complement system, the coagulation/contact activation/kallikrein system, and the fibrinolytic system) occurs via activation of zymogen molecules to specific active proteolytic enzymes. Despite the fact that the generated proteases are all present together in the blood, under physiological conditions, the activity of the generated proteases is controlled by endogenous protease inhibitors. Consequently, there is remarkable little crosstalk between the different systems in the fluid phase. This concept review article aims at identifying and describing conditions where the strict system-related control is circumvented. These include clinical settings where massive amounts of proteolytic enzymes are released from tissues, e.g., during pancreatitis or post-traumatic tissue damage, resulting in consumption of the natural substrates of the specific proteases and the available protease inhibitor. Another example of cascade system dysregulation is disseminated intravascular coagulation, with canonical activation of all cascade systems of the blood, also leading to specific substrate and protease inhibitor elimination. The present review explains basic concepts in protease biochemistry of importance to understand clinical conditions with extensive protease activation.