Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Eur Heart J Digit Health ; 5(1): 60-68, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38264705

RESUMEN

Aims: Echocardiographic strain imaging reflects myocardial deformation and is a sensitive measure of cardiac function and wall-motion abnormalities. Deep learning (DL) algorithms could automate the interpretation of echocardiographic strain imaging. Methods and results: We developed and trained an automated DL-based algorithm for left ventricular (LV) strain measurements in an internal dataset. Global longitudinal strain (GLS) was validated externally in (i) a real-world Taiwanese cohort of participants with and without heart failure (HF), (ii) a core-lab measured dataset from the multinational prevalence of microvascular dysfunction-HF and preserved ejection fraction (PROMIS-HFpEF) study, and regional strain in (iii) the HMC-QU-MI study of patients with suspected myocardial infarction. Outcomes included measures of agreement [bias, mean absolute difference (MAD), root-mean-squared-error (RMSE), and Pearson's correlation (R)] and area under the curve (AUC) to identify HF and regional wall-motion abnormalities. The DL workflow successfully analysed 3741 (89%) studies in the Taiwanese cohort, 176 (96%) in PROMIS-HFpEF, and 158 (98%) in HMC-QU-MI. Automated GLS showed good agreement with manual measurements (mean ± SD): -18.9 ± 4.5% vs. -18.2 ± 4.4%, respectively, bias 0.68 ± 2.52%, MAD 2.0 ± 1.67, RMSE = 2.61, R = 0.84 in the Taiwanese cohort; and -15.4 ± 4.1% vs. -15.9 ± 3.6%, respectively, bias -0.65 ± 2.71%, MAD 2.19 ± 1.71, RMSE = 2.78, R = 0.76 in PROMIS-HFpEF. In the Taiwanese cohort, automated GLS accurately identified patients with HF (AUC = 0.89 for total HF and AUC = 0.98 for HF with reduced ejection fraction). In HMC-QU-MI, automated regional strain identified regional wall-motion abnormalities with an average AUC = 0.80. Conclusion: DL algorithms can interpret echocardiographic strain images with similar accuracy as conventional measurements. These results highlight the potential of DL algorithms to democratize the use of cardiac strain measurements and reduce time-spent and costs for echo labs globally.

2.
Rev Sci Instrum ; 94(5)2023 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-37171234

RESUMEN

The Oak Ridge National Laboratory is planning to build the Second Target Station (STS) at the Spallation Neutron Source (SNS). STS will host a suite of novel instruments that complement the First Target Station's beamline capabilities by offering an increased flux for cold neutrons and a broader wavelength bandwidth. A novel neutron imaging beamline, named the Complex, Unique, and Powerful Imaging Instrument for Dynamics (CUPI2D), is among the first eight instruments that will be commissioned at STS as part of the construction project. CUPI2D is designed for a broad range of neutron imaging scientific applications, such as energy storage and conversion (batteries and fuel cells), materials science and engineering (additive manufacturing, superalloys, and archaeometry), nuclear materials (novel cladding materials, nuclear fuel, and moderators), cementitious materials, biology/medical/dental applications (regenerative medicine and cancer), and life sciences (plant-soil interactions and nutrient dynamics). The innovation of this instrument lies in the utilization of a high flux of wavelength-separated cold neutrons to perform real time in situ neutron grating interferometry and Bragg edge imaging-with a wavelength resolution of δλ/λ ≈ 0.3%-simultaneously when required, across a broad range of length and time scales. This manuscript briefly describes the science enabled at CUPI2D based on its unique capabilities. The preliminary beamline performance, a design concept, and future development requirements are also presented.

3.
Proc Natl Acad Sci U S A ; 117(52): 33061-33071, 2020 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-33376215

RESUMEN

Engineering neutron diffraction can nondestructively and noninvasively probe stress, strain, temperature, and phase evolutions deep within bulk materials. In this work, we demonstrate operando lattice strain measurement of internal combustion engine components by neutron diffraction. A modified commercial generator engine was mounted in the VULCAN diffractometer at the Spallation Neutron Source, and the lattice strains in both the cylinder block and head were measured under static nonfiring conditions as well as steady state and cyclic transient operation. The dynamic temporal response of the lattice strain change during transient operation was resolved in two locations by asynchronous stroboscopic neutron diffraction. We demonstrated that operando neutron measurements can allow for understanding of how materials behave throughout operational engineering devices. This study opens a pathway for the industrial and academic communities to better understand the complexities of material behavior during the operation of internal combustion engines and other real-scale devices and systems and to leverage techniques developed here for future investigations of numerous new platforms and alloys.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA