Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Sci Total Environ ; 944: 173900, 2024 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-38866144

RESUMEN

Air pollution is a major environmental problem and its monitoring is essential for regulatory purposes, policy making, and protecting public health. However, dense networks of air quality monitoring equipment are prohibitively expensive due to equipment costs, labor requirements, and infrastructure needs. As a result, alternative lower-cost methods that reliably determine air quality levels near potent pollution sources such as freeways are desirable. We present an approach that couples noise frequency measurements with machine learning to estimate near-roadway particulate matter (PM2.5), nitrogen dioxide (NO2), and black carbon (BC) at 1-min temporal resolution. The models were based on data collected by co-located noise and air quality instruments near a busy freeway in Long Beach, California. Model performance was excellent for all three pollutants, e.g., NO2 predictions yielded Pearson's R = 0.87 with a root mean square error of 7.2 ppb; this error represents about 10 % of total morning rush hour concentrations. Among the best air pollutant predictors were noise frequencies at 40 Hz, 500 Hz, and 800 Hz, and meteorology, particularly wind direction. Overall, our method potentially provides a cost-effective and efficient approach to estimating and/or supplementing near-road air pollutant concentrations in urban areas at high temporal resolution.

2.
Cancer Epidemiol Biomarkers Prev ; 33(5): 703-711, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38372643

RESUMEN

BACKGROUND: Ultrafine particles (UFP) are unregulated air pollutants abundant in aviation exhaust. Emerging evidence suggests that UFPs may impact lung health due to their high surface area-to-mass ratio and deep penetration into airways. This study aimed to assess long-term exposure to airport-related UFPs and lung cancer incidence in a multiethnic population in Los Angeles County. METHODS: Within the California Multiethnic Cohort, we examined the association between long-term exposure to airport-related UFPs and lung cancer incidence. Multivariable Cox proportional hazards regression models were used to estimate the effect of UFP exposure on lung cancer incidence. Subgroup analyses by demographics, histology and smoking status were conducted. RESULTS: Airport-related UFP exposure was not associated with lung cancer risk [per one IGR HR, 1.01; 95% confidence interval (CI), 0.97-1.05] overall and across race/ethnicity. A suggestive positive association was observed between a one IQR increase in UFP exposure and lung squamous cell carcinoma (SCC) risk (HR, 1.08; 95% CI, 1.00-1.17) with a Phet for histology = 0.05. Positive associations were observed in 5-year lag analysis for SCC (HR, 1.12; 95% CI, CI, 1.02-1.22) and large cell carcinoma risk (HR, 1.23; 95% CI, 1.01-1.49) with a Phet for histology = 0.01. CONCLUSIONS: This large prospective cohort analysis suggests a potential association between airport-related UFP exposure and specific lung histologies. The findings align with research indicating that UFPs found in aviation exhaust may induce inflammatory and oxidative injury leading to SCC. IMPACT: These results highlight the potential role of airport-related UFP exposure in the development of lung SCC.


Asunto(s)
Aeropuertos , Neoplasias Pulmonares , Material Particulado , Humanos , Neoplasias Pulmonares/epidemiología , Neoplasias Pulmonares/etiología , Masculino , Femenino , Material Particulado/efectos adversos , Material Particulado/análisis , Persona de Mediana Edad , Anciano , Factores de Riesgo , Estudios de Cohortes , Contaminantes Atmosféricos/efectos adversos , Estudios Prospectivos , Exposición a Riesgos Ambientales/efectos adversos , Incidencia , Etnicidad/estadística & datos numéricos , Los Angeles/epidemiología
3.
Environ Epidemiol ; 7(4): e264, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37545810

RESUMEN

More than half of adolescent children do not get the recommended 8 hours of sleep necessary for optimal growth and development. In adults, several studies have evaluated effects of urban stressors including lack of greenspace, air pollution, noise, nighttime light, and psychosocial stress on sleep duration. Little is known about these effects in adolescents, however, it is known that these exposures vary by socioeconomic status (SES). We evaluated the association between several environmental exposures and sleep in adolescent children in Southern California. Methods: In 2010, a total of 1476 Southern California Children's Health Study (CHS) participants in grades 9 and 10 (mean age, 13.4 years; SD, 0.6) completed a questionnaire including topics on sleep and psychosocial stress. Exposures to greenspace, artificial light at night (ALAN), nighttime noise, and air pollution were estimated at each child's residential address, and SES was characterized by maternal education. Odds ratios and 95% confidence intervals (95% CIs) for sleep outcomes were estimated by environmental exposure, adjusting for age, sex, race/ethnicity, home secondhand smoke, and SES. Results: An interquartile range (IQR) increase in greenspace decreased the odds of not sleeping at least 8 hours (odds ratio [OR], 0.86 [95% CI, 0.71, 1.05]). This association was significantly protective in low SES participants (OR, 0.77 [95% CI, 0.60, 0.98]) but not for those with high SES (OR, 1.16 [95%CI, 0.80, 1.70]), interaction P = 0.03. Stress mediated 18.4% of the association among low SES participants. Conclusions: Residing in urban neighborhoods of greater greenness was associated with improved sleep duration among children of low SES but not higher SES. These findings support the importance of widely reported disparities in exposure and access to greenspace in socioeconomically disadvantaged populations.

4.
Environ Pollut ; 332: 121962, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37277070

RESUMEN

Inhaled particles and gases can harm health by promoting chronic inflammation in the body. Few studies have investigated the relationship between outdoor air pollution and inflammation by race and ethnicity, socioeconomic status, and lifestyle risk factors. We examined associations of particulate matter (PM) and other markers of traffic-related air pollution with circulating levels of C-reactive protein (CRP), a biomarker of systemic inflammation. CRP was measured from blood samples obtained in 1994-2016 from 7,860 California residents participating in the Multiethnic Cohort (MEC) Study. Exposure to PM (aerodynamic diameter ≤2.5 µm [PM2.5], ≤10 µm [PM10], and between 2.5 and 10 µm [PM10-2.5]), nitrogen oxides (NOx, including nitrogen dioxide [NO2]), carbon monoxide (CO), ground-level ozone (O3), and benzene averaged over one or twelve months before blood draw were estimated based on participants' addresses. Percent change in geometric mean CRP levels and 95% confidence intervals (CI) per standard concentration increase of each pollutant were estimated using multivariable generalized linear regression. Among 4,305 females (55%) and 3,555 males (45%) (mean age 68.1 [SD 7.5] years at blood draw), CRP levels increased with 12-month exposure to PM10 (11.0%, 95% CI: 4.2%, 18.2% per 10 µg/m3), PM10-2.5 (12.4%, 95% CI: 1.4%, 24.5% per 10 µg/m3), NOx (10.4%, 95% CI: 2.2%, 19.2% per 50 ppb), and benzene (2.9%, 95% CI: 1.1%, 4.6% per 1 ppb). In subgroup analyses, these associations were observed in Latino participants, those who lived in low socioeconomic neighborhoods, overweight or obese participants, and never or former smokers. No consistent patterns were found for 1-month pollutant exposures. This investigation identified associations of primarily traffic-related air pollutants, including PM, NOx, and benzene, with CRP in a multiethnic population. The diversity of the MEC across demographic, socioeconomic, and lifestyle factors allowed us to explore the generalizability of the effects of air pollution on inflammation across subgroups.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Ozono , Masculino , Femenino , Humanos , Anciano , Material Particulado/análisis , Emisiones de Vehículos/análisis , Contaminantes Atmosféricos/análisis , Proteína C-Reactiva/análisis , Estudios de Cohortes , Benceno/análisis , Exposición a Riesgos Ambientales/análisis , Contaminación del Aire/análisis , Ozono/análisis , Dióxido de Nitrógeno/análisis , Inflamación/inducido químicamente , Inflamación/epidemiología
5.
Environ Int ; 170: 107583, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36272254

RESUMEN

Unlike air pollution, traffic-related noise remains unregulated and has been under-studied despite evidence of its deleterious health impacts. To characterize population exposure to traffic noise, both acoustic-based numerical models and data-driven statistical approaches can generate estimates over large urban areas. The aim of this work is to formally compare the performances of the most common traffic noise models by evaluating their estimates for different categories of roads and validating them against a unique dataset of measured noise in Long Beach, California. Specifically, a statistical land use regression model, an extreme gradient boosting machine learning model (XGB), and three numerical/acoustic traffic noise models: the US Noise Model (FHWA-TNM2.5), a commercial noise model (CadnaA), and an open-source European model (Harmonoise) were optimized and compared. The results demonstrate that XGB and CadnaA were the most effective models for estimating traffic noise, and they are particularly adept at differentiating noise levels on different categories of road.

6.
Environ Int ; 165: 107247, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35716554

RESUMEN

Due to a scarcity of routine monitoring of speciated particulate matter (PM), there has been limited capability to develop exposure models that robustly estimate component-specific concentrations. This paper presents the largest such study conducted in a single urban area. Using samples that were collected at 220 locations over two seasons, quasi-ultrafine (PM0.2), accumulation mode fine (PM0.2-2.5), and coarse (PM2.5-10) particulate matter concentrations were used to develop spatiotemporal regression, machine learning models that enabled predictions of 24 elemental components in eight Southern California communities. We used supervised variable selection of over 150 variables, largely from publicly available sources, including meteorological, roadway and traffic characteristics, land use, and dispersion model estimates of traffic emissions. PM components that have high oxidative potential (and potentially large health effects) or are otherwise important markers for major PM sources were the primary focus. We present results for copper, iron, and zinc (as non-tailpipe vehicle emissions); elemental carbon (diesel emissions); vanadium (ship emissions); calcium (soil dust); and sodium (sea salt). Spatiotemporal linear regression models with 17 to 36 predictor variables including meteorology; distance to different classifications of roads; intersections and off ramps within a given buffer distance; truck and vehicle traffic volumes; and near-roadway dispersion model estimates produced superior predictions over the machine learning approaches (cross validation R-squares ranged from 0.76 to 0.92). Our models are easily interpretable and appear to have more effectively captured spatial gradients in the metallic portion of PM than other comparably large studies, particularly near roadways for the non-tailpipe emissions. Furthermore, we demonstrated the importance of including spatiotemporally resolved meteorology in our models as it helped to provide key insights into spatial patterns and allowed us to make temporal predictions.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Contaminantes Atmosféricos/análisis , Contaminación del Aire/análisis , Monitoreo del Ambiente/métodos , Material Particulado/análisis , Emisiones de Vehículos/análisis
7.
Am J Respir Crit Care Med ; 206(8): 1008-1018, 2022 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-35649154

RESUMEN

Rationale: Although the contribution of air pollution to lung cancer risk is well characterized, few studies have been conducted in racially, ethnically, and socioeconomically diverse populations. Objectives: To examine the association between traffic-related air pollution and risk of lung cancer in a racially, ethnically, and socioeconomically diverse cohort. Methods: Among 97,288 California participants of the Multiethnic Cohort Study, we used Cox proportional hazards regression to examine associations between time-varying traffic-related air pollutants (gaseous and particulate matter pollutants and regional benzene) and lung cancer risk (n = 2,796 cases; average follow-up = 17 yr), adjusting for demographics, lifetime smoking, occupation, neighborhood socioeconomic status (nSES), and lifestyle factors. Subgroup analyses were conducted for race, ethnicity, nSES, and other factors. Measurements and Main Results: Among all participants, lung cancer risk was positively associated with nitrogen oxide (hazard ratio [HR], 1.15 per 50 ppb; 95% confidence interval [CI], 0.99-1.33), nitrogen dioxide (HR, 1.12 per 20 ppb; 95% CI, 0.95-1.32), fine particulate matter with aerodynamic diameter <2.5 µm (HR, 1.20 per 10 µg/m3; 95% CI, 1.01-1.43), carbon monoxide (HR, 1.29 per 1,000 ppb; 95% CI, 0.99-1.67), and regional benzene (HR, 1.17 per 1 ppb; 95% CI, 1.02-1.34) exposures. These patterns of associations were driven by associations among African American and Latino American groups. There was no formal evidence for heterogeneity of effects by nSES (P heterogeneity > 0.21), although participants residing in low-SES neighborhoods had increased lung cancer risk associated with nitrogen oxides, and no association was observed among those in high-SES neighborhoods. Conclusions: These findings in a large multiethnic population reflect an association between lung cancer and the mixture of traffic-related air pollution and not a particular individual pollutant. They are consistent with the adverse effects of air pollution that have been described in less racially, ethnically, and socioeconomically diverse populations. Our results also suggest an increased risk of lung cancer among those residing in low-SES neighborhoods.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Neoplasias Pulmonares , Contaminantes Atmosféricos/efectos adversos , Contaminantes Atmosféricos/análisis , Contaminación del Aire/efectos adversos , Contaminación del Aire/análisis , Benceno , California/epidemiología , Monóxido de Carbono , Estudios de Cohortes , Exposición a Riesgos Ambientales/efectos adversos , Humanos , Neoplasias Pulmonares/epidemiología , Neoplasias Pulmonares/etiología , Dióxido de Nitrógeno , Material Particulado/efectos adversos , Material Particulado/análisis , Emisiones de Vehículos/toxicidad
8.
Sci Total Environ ; 829: 154678, 2022 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-35314238

RESUMEN

INTRODUCTION: Air pollution has been linked to preterm birth (PTB) while findings for noise exposure have been mixed. Few studies - none considering airports - have investigated combined exposures. We explore the relationship between joint exposure to airport-related noise, airport ultrafine particles (UFP), and vehicle traffic-related air pollution (TRAP) on risk of PTB near Los Angeles International Airport (LAX). METHODS: We used comprehensive birth data for mothers living ≤15 km from LAX from 2008 to 2016 (n = 174,186) Noise data were generated by monitor-validated models. NO2 was used as a TRAP proxy, estimated with a seasonally-adjusted, validated land-use regression model. We estimated the effects of exposure to airport-related noise and TRAP on PTB employing logistic regression models that adjusted for known maternal risk factors for PTB as well as aircraft-origin UFP and neighborhood characteristics. RESULTS: The adjusted odds ratio (aOR) for PTB from high noise exposure (i.e. > 65 dB) was 1.10 (95% CI: 1.01-1.19). Relative to the first quartile, the aORs for PTB in the second, third, and fourth TRAP quartiles were 1.10 (95% CI: 1.05-1.16), 1.11 (95% CI: 1.05-1.16), and 1.15 (95% CI: 1.10-1.22), respectively. When stratifying by increasing TRAP quartiles, the aORs for PTB with high airport-related noise were 1.04 (95% CI: 0.91-1.18), 1.02 (95% CI: 0.88-1.19), 1.24 (95% CI: 1.03-1.48), and 1.44 (95% CI: 1.08-1.91) (p-interaction = 0.06). CONCLUSION: Our results suggest a potential synergism between airport-related noise and TRAP exposures on increasing the risk of PTB in this metropolitan area.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Nacimiento Prematuro , Contaminantes Atmosféricos/efectos adversos , Contaminantes Atmosféricos/análisis , Aeronaves , Femenino , Humanos , Recién Nacido , Los Angeles/epidemiología , Material Particulado/análisis , Nacimiento Prematuro/inducido químicamente , Nacimiento Prematuro/epidemiología
9.
Environ Sci Technol ; 56(11): 6988-6995, 2022 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-35073059

RESUMEN

Santa Monica Airport (SMO), a general aviation airport in Southern California, recently shortened its only runway by 225 m at both ends to limit jet aircraft operations. We evaluated the resulting changes in aviation activity and air quality by measuring particle number (PN), black carbon (BC), and lead (Pb) concentrations, before and after the runway was shortened at two near-airfield locations including a residential site. Postshortening, there was a 50% decrease in total operations, driven mostly by the greater than 80% decrease in jet operations; however, there was no significant change in piston engine aircraft operations (which use leaded fuel). We measured greater than 75%, 30%, and 75% reductions in the concentrations of PN, BC, and Pb, respectively, after the runway was shortened, largely due to enhanced dispersion resulting from the increased distance to the newly shortened runway. Overall, the runway shortening improved air quality in nearby areas such that airport impacts were comparable to or lower than impacts from other sources such as vehicular traffic. Until aviation fuel becomes completely unleaded, runway shortening or relocating operations away from the edge abutting residential areas may be the most effective environmental impact mitigation strategy for general aviation airports situated adjacent to residential areas.


Asunto(s)
Contaminantes Atmosféricos , Aviación , Contaminantes Atmosféricos/análisis , Aeronaves , Aeropuertos , Plomo , Material Particulado/análisis , Mejoramiento de la Calidad , Hollín
10.
Cancer Res ; 81(16): 4360-4369, 2021 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-34167950

RESUMEN

Ultrafine particles (UFP; diameter less than or equal to 100 nm) may reach the brain via systemic circulation or the olfactory tract and have been implicated in the risk of brain tumors. The effects of airport-related UFP on the risk of brain tumors are not known. Here we determined the association between airport-related UFP and risk of incident malignant brain cancer (n = 155) and meningioma (n = 420) diagnosed during 16.4 years of follow-up among 75,936 men and women residing in Los Angeles County from the Multiethnic Cohort study. UFP exposure from aircrafts was estimated for participants who lived within a 53 km × 43 km grid area around the Los Angeles International Airport (LAX) from date of cohort entry (1993-1996) through December 31, 2013. Cox proportional hazards models were used to estimate the effects of time-varying, airport-related UFP exposure on risk of malignant brain cancer and meningioma, adjusting for sex, race/ethnicity, education, and neighborhood socioeconomic status. Malignant brain cancer risk in all subjects combined increased 12% [95% confidence interval (CI), 0.98-1.27] per interquartile range (IQR) of airport-related UFP exposure (∼6,700 particles/cm3) for subjects with any address in the grid area surrounding the LAX airport. In race/ethnicity-stratified analyses, African Americans, the subgroup who had the highest exposure, showed a HR of 1.32 (95% CI, 1.07-1.64) for malignant brain cancer per IQR in UFP exposure. UFP exposure was not related to risk of meningioma overall or by race/ethnicity. These results support the hypothesis that airport-related UFP exposure may be a risk factor for malignant brain cancers. SIGNIFICANCE: Malignant brain cancer risk increases with airport-related UFP exposure, particularly among African Americans, suggesting UFP exposure may be a modifiable risk factor for malignant brain cancer.


Asunto(s)
Aeropuertos , Neoplasias Encefálicas/etiología , Neoplasias Encefálicas/metabolismo , Exposición a Riesgos Ambientales , Meningioma/etiología , Meningioma/metabolismo , Material Particulado , Negro o Afroamericano , Anciano , Encéfalo/patología , Neoplasias Encefálicas/etnología , Estudios de Cohortes , Sistemas de Computación , Etnicidad , Femenino , Humanos , Los Angeles , Masculino , Neoplasias Meníngeas/etnología , Neoplasias Meníngeas/etiología , Neoplasias Meníngeas/metabolismo , Meningioma/etnología , Persona de Mediana Edad , Bulbo Olfatorio/fisiología , Estudios Prospectivos , Riesgo , Factores de Riesgo , Estados Unidos
11.
J Air Waste Manag Assoc ; 71(2): 209-230, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-32990509

RESUMEN

Exposure to traffic-related air pollution (TRAP) in the near-roadway environment is associated with multiple adverse health effects. To characterize the relative contribution of tailpipe and non-tailpipe TRAP sources to particulate matter (PM) in the quasi-ultrafine (PM0.2), fine (PM2.5) and coarse (PM2.5-10) size fractions and identify their spatial determinants in southern California (CA). Month-long integrated PM0.2, PM2.5 and PM2.5-10 samples (n = 461, 265 and 298, respectively) were collected across cool and warm seasons in 8 southern CA communities (2008-9). Concentrations of PM mass, elements, carbons and major ions were obtained. Enrichment ratios (ER) in PM0.2 and PM10 relative to PM2.5 were calculated for each element. The Positive Matrix Factorization model was used to resolve and estimate the relative contribution of TRAP sources to PM in three size fractions. Generalized additive models (GAMs) with bivariate loess smooths were used to understand the geographic variation of TRAP sources and identify their spatial determinants. EC, OC, and B had the highest median ER in PM0.2 relative to PM2.5. Six, seven and five sources (with characteristic species) were resolved in PM0.2, PM2.5 and PM2.5-10, respectively. Combined tailpipe and non-tailpipe traffic sources contributed 66%, 32% and 18% of PM0.2, PM2.5 and PM2.5-10 mass, respectively. Tailpipe traffic emissions (EC, OC, B) were the largest contributor to PM0.2 mass (58%). Distinct gasoline and diesel tailpipe traffic sources were resolved in PM2.5. Others included fuel oil, biomass burning, secondary inorganic aerosol, sea salt, and crustal/soil. CALINE4 dispersion model nitrogen oxides, trucks and intersections were most correlated with TRAP sources. The influence of smaller roadways and intersections became more apparent once Long Beach was excluded. Non-tailpipe emissions constituted ~8%, 11% and 18% of PM0.2, PM2.5 and PM2.5-10, respectively, with important exposure and health implications. Future efforts should consider non-linear relationships amongst predictors when modeling exposures. Implications: Vehicle emissions result in a complex mix of air pollutants with both tailpipe and non-tailpipe components. As mobile source regulations lead to decreased tailpipe emissions, the relative contribution of non-tailpipe traffic emissions to near-roadway exposures is increasing. This study documents the presence of non-tailpipe abrasive vehicular emissions (AVE) from brake and tire wear, catalyst degradation and resuspended road dust in the quasi-ultrafine (PM0.2), fine and coarse particulate matter size fractions, with contributions reaching up to 30% in PM0.2 in some southern California communities. These findings have important exposure and policy implications given the high metal content of AVE and the efficiency of PM0.2 at reaching the alveolar region of the lungs and other organ systems once inhaled. This work also highlights important considerations for building models that can accurately predict tailpipe and non-tailpipe exposures for population health studies.


Asunto(s)
Contaminantes Atmosféricos , Material Particulado , Aerosoles , Contaminantes Atmosféricos/análisis , California , Monitoreo del Ambiente , Material Particulado/análisis , Emisiones de Vehículos/análisis
12.
JAMA Netw Open ; 3(10): e2017634, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-33084897

RESUMEN

Importance: Emerging research suggests that factors associated with the built environment, including artificial light, air pollution, and noise, may adversely affect children's mental health, while living near green space may reduce stress. Little is known about the combined roles of these factors on children's stress. Objective: To investigate associations between components of the built environment with personal and home characteristics in a large cohort of children who were assessed for perceived stress. Design, Setting, and Participants: In this cohort study, a total of 2290 Southern California Children's Health Study participants residing in 8 densely populated urban communities responded to detailed questionnaires. Exposures of artificial light at night (ALAN) derived from satellite observations, near-roadway air pollution (NRP) determined from a dispersion model, noise estimated from the US Traffic Noise Model, and green space from satellite observations of the enhanced vegetation index were linked to each participant's geocoded residence. Main Outcomes and Measures: Children's stress was assessed at ages 13 to 14 years and 15 to 16 years using the 4-item Perceived Stress Scale (PSS-4), scaled from 0 to 16, with higher scores indicating greater perceived stress. Measurements were conducted in 2010 and 2012, and data were analyzed from February 6 to August 24, 2019. Multivariate mixed-effects models were used to examine multiple exposures; modification and mediation analyses were also conducted. Results: Among the 2290 children in this study, 1149 were girls (50%); mean (SD) age was 13.5 (0.6) years. Girls had significantly higher perceived stress measured by PSS-4 (mean [SD] score, 5.7 [3.4]) than boys (4.9 [3.2]). With increasing age (from 13.5 [0.6] to 15.3 [0.6] years), the mean PSS-4 score rose from 5.6 (3.3) to 6.0 (3.4) in girls but decreased for boys from 5.0 (3.2) to 4.7 (3.1). Multivariate mixed-effects models examining multiple exposures indicated that exposure to secondhand smoke in the home was associated with a 0.85 (95% CI, 0.46-1.24) increase in the PSS-4 score. Of the factors related to the physical environment, an interquartile range (IQR) increase in ALAN was associated with a 0.57 (95% CI, 0.05-1.09) unit increase in the PSS-4 score together with a 0.16 score increase per IQR increase of near-roadway air pollution (95% CI, 0.02-0.30) and a -0.24 score decrease per IQR increase of the enhanced vegetation index (95% CI, -0.45 to -0.04). Income modified the ALAN effect size estimate; participants in households earning less than $48 000 per year had significantly greater stress per IQR increase in ALAN. Sleep duration partially mediated the associations between stress and both enhanced vegetation index (17%) and ALAN (18%). Conclusions and Relevance: In this cohort study, children's exposure to smoke at home in addition to residential exposure to ALAN and near-roadway air pollution were associated with increased perceived stress among young adolescent children. These associations appeared to be partially mitigated by more residential green space. The findings may support the promotion of increased residential green spaces to reduce pollution associated with the built environment, with possible mental health benefits for children.


Asunto(s)
Adaptación Psicológica , Conducta del Adolescente/psicología , Entorno Construido/psicología , Entorno Construido/estadística & datos numéricos , Salud Infantil/estadística & datos numéricos , Características de la Residencia/estadística & datos numéricos , Estrés Psicológico , Adolescente , Factores de Edad , California , Ciudades/estadística & datos numéricos , Estudios de Cohortes , Femenino , Humanos , Masculino , Factores Sexuales
13.
Environ Sci Technol ; 54(20): 12860-12869, 2020 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-32930589

RESUMEN

Environmental noise has been associated with a variety of health endpoints including cardiovascular disease, sleep disturbance, depression, and psychosocial stress. Most population noise exposure comes from vehicular traffic, which produces fine-scale spatial variability that is difficult to characterize using traditional fixed-site measurement techniques. To address this challenge, we collected A-weighted, equivalent noise (LAeq in decibels, dB) data on hour-long foot journeys around 16 locations throughout Long Beach, California and trained four machine learning models, linear regression, random forest, extreme gradient boosting, and a neural network, to predict noise with 20 m resolution. Input variables to the models included traffic metrics, road network features, meteorological conditions, and land use type. Among all machine learning models, extreme gradient boosting had the best results in validation tests (leave-one-route-out R2 = 0.71, root mean square error (RMSE) of 4.54 dB; 5-fold R2 = 0.96, RMSE of 1.8 dB). Local traffic volume was the most important predictor of noise; road features, land use, and meteorology including humidity, temperature, and wind speed also contributed. We show that a novel, on-foot mobile noise measurement method coupled with machine learning approaches enables highly accurate prediction of small-scale spatial patterns in traffic-related noise over a mixed-use urban area.


Asunto(s)
Ruido del Transporte , Monitoreo del Ambiente , Modelos Lineales , Aprendizaje Automático , Redes Neurales de la Computación , Ruido del Transporte/efectos adversos
14.
Environ Sci Technol ; 54(14): 8580-8588, 2020 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-32639745

RESUMEN

Impacts of aviation emissions on air quality in and around residences near airports remain underexamined. We measured gases (CO, CO2, NO, and NO2) and particles (black carbon, particle-bound aromatic hydrocarbons, fine particulate matter (PM2.5), and ultrafine particles (reported using particle number concentrations (PNC) as a proxy)) continuously for 1 month at a residence near the Logan International Airport, Boston. The residence was located under a flight trajectory of the most utilized runway configuration. We found that when the residence was downwind of the airport, the concentrations of all gaseous and particulate pollutants (except PM2.5) were 1.1- to 4.8-fold higher than when the residence was not downwind of the airport. Controlling for runway usage and meteorology, the impacts were highest during overhead landing operations: average PNC was 7.5-fold higher from overhead landings versus takeoffs on the closest runway. Infiltration of aviation-origin emissions resulted in indoor PNC that were comparable to ambient concentrations measured locally on roadways and near highways. In addition, ambient NO2 concentrations at the residence exceeded those measured at regulatory monitoring sites in the area including near-road monitors. Our results highlight the need for further characterization of outdoor and indoor impacts of aviation emissions at the neighborhood scale to more accurately estimate residential exposures.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Aviación , Contaminantes Atmosféricos/análisis , Contaminación del Aire/análisis , Aeropuertos , Boston , Monitoreo del Ambiente , Material Particulado/análisis , Emisiones de Vehículos/análisis
15.
Environ Health Perspect ; 128(4): 47002, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32238012

RESUMEN

INTRODUCTION: Ambient air pollution is a known risk factor for adverse birth outcomes, but the role of ultrafine particles (UFPs) is not well understood. Aircraft-origin UFPs adversely affect air quality over large residential areas downwind of airports, but their reproductive health burden remains uninvestigated. OBJECTIVES: This analysis evaluated whether UFPs from jet aircraft emissions are associated with increased rates of preterm birth (PTB) among pregnant mothers living downwind of Los Angeles International Airport (LAX). METHODS: This population-based study used birth records, provided by the California Department of Public Health, to ascertain birth outcomes and a novel, validated geospatial UFP dispersion model approach to estimate in utero exposures. All mothers who gave birth from 2008 to 2016 while living within 15km of LAX were included in this analysis (N=174,186; including 15,134 PTBs). RESULTS: In utero exposure to aircraft-origin UFPs was positively associated with PTB. The odds ratio (OR) per interquartile range (IQR) increase [9,200 particles per cubic centimeter (cc)] relative UFP exposure was 1.04 [95% confidence interval (CI): 1.02, 1.06]. When comparing the fourth quartile of UFP exposure to the first quartile, the OR for PTB was 1.14 (95% CI: 1.08, 1.20), adjusting for maternal demographic characteristics, exposure to traffic-related air pollution, and airport-related noise. CONCLUSION: Our results suggest that emissions from aircraft play an etiologic role in PTBs, independent of noise and traffic-related air pollution exposures. These findings are of public health concern because UFP exposures downwind of airfields are common and may affect large, densely populated residential areas. https://doi.org/10.1289/EHP5732.


Asunto(s)
Contaminantes Atmosféricos/análisis , Aeronaves , Exposición a Riesgos Ambientales/análisis , Material Particulado/análisis , Nacimiento Prematuro/epidemiología , Emisiones de Vehículos/análisis , Adulto , Femenino , Humanos , Recién Nacido , Los Angeles/epidemiología , Masculino , Nacimiento Prematuro/inducido químicamente , Adulto Joven
16.
JNCI Cancer Spectr ; 4(2): pkz107, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32211584

RESUMEN

BACKGROUND: There are increasing concerns about the potential impact of air pollution on chronic brain inflammation and microglia cell activation, but evidence of its carcinogenic effects is limited. METHODS: We used kriging interpolation and land use regression models to estimate long-term air pollutant exposures of oxides of nitrogen (NOx, NO2), kriging interpolation for ozone (O3), carbon monoxide, and particulate matter (PM2.5, PM10), and nearest monitoring station measurements for benzene for 103 308 men and women from the Multiethnic Cohort, residing largely in Los Angeles County from recruitment (1993-1996) through 2013. We used Cox proportional hazards models to examine the associations between time-varying pollutants and risk of malignant brain cancer (94 men, 116 women) and meningioma (130 men, 425 women) with adjustment for sex, race and ethnicity, neighborhood socioeconomic status, smoking, occupation, and other covariates. Stratified analyses were conducted by sex and race and ethnicity. RESULTS: Brain cancer risk in men increased in association with exposure to benzene (hazard ratio [HR] = 3.52, 95% confidence interval [CI] = 1.55 to 7.55) and PM10 (HR = 1.80, 95% CI = 1.00 to 3.23). Stronger associations with PM10 (HR = 3.02, 95% CI = 1.26 to 7.23), O3 (HR = 2.93, 95% CI = 1.09 to 7.88), and benzene (HR = 4.06, 95% CI = 1.17 to 18.2) were observed among Latino men. Air pollution was unrelated to risk of meningioma except that O3 exposure was associated with risk in men (HR = 1.77, 95% CI = 1.02 to 3.06). Brain cancer risk in women was unrelated to air pollution exposures. CONCLUSIONS: Confirmation of these sex differences in air pollution-brain cancer associations and the stronger findings in Latino men in additional diverse populations is warranted.

17.
Environ Int ; 118: 48-59, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29800768

RESUMEN

BACKGROUND: Exposure to ultrafine particles (UFP, particles with aerodynamic diameter < 100 nm) is associated with reduced lung function and airway inflammation in individuals with asthma. Recently, elevated UFP number concentrations (PN) from aircraft landing and takeoff activity were identified downwind of the Los Angeles International Airport (LAX) but little is known about the health impacts of airport-related UFP exposure. METHODS: We conducted a randomized crossover study of 22 non-smoking adults with mild to moderate asthma in Nov-Dec 2014 and May-Jul 2015 to investigate short-term effects of exposure to LAX airport-related UFPs. Participants conducted scripted, mild walking activity on two occasions in public parks inside (exposure) and outside (control) of the high UFP zone. Spirometry, multiple flow exhaled nitric oxide, and circulating inflammatory cytokines were measured before and after exposure. Personal UFP PN and lung deposited surface area (LDSA) and stationary UFP PN, black carbon (BC), particle-bound PAHs (PB-PAH), ozone (O3), carbon dioxide (CO2) and particulate matter (PM2.5) mass were measured. Source apportionment analysis was conducted to distinguish aircraft from roadway traffic related UFP sources. Health models investigated within-subject changes in outcomes as a function of pollutants and source factors. RESULTS: A high two-hour walking period average contrast of ~34,000 particles·cm-3 was achieved with mean (std) PN concentrations of 53,342 (25,529) and 19,557 (11,131) particles·cm-3 and mean (std) particle size of 28.7 (9.5) and 33.2 (11.5) at the exposure and control site, respectively. Principal components analysis differentiated airport UFPs (PN), roadway traffic (BC, PB-PAH), PM mass (PM2.5, PM10), and secondary photochemistry (O3) sources. A standard deviation increase in the 'Airport UFPs' factor was significantly associated with IL-6, a circulating marker of inflammation (single-pollutant model: 0.21, 95% CI = 0.08-0.34; multi-pollutant model: 0.18, 0.04-0.32). The 'Traffic' factor was significantly associated with lower Forced Expiratory Volume in 1 s (FEV1) (single-pollutant model: -1.52, -2.28 to -0.77) and elevated sTNFrII (single-pollutant model: 36.47; 6.03-66.91; multi-pollutant model: 64.38; 6.30-122.46). No consistent associations were observed with exhaled nitric oxide. CONCLUSIONS: To our knowledge, our study is the first to demonstrate increased acute systemic inflammation following exposure to airport-related UFPs. Health effects associated with roadway traffic exposure were distinct. This study emphasizes the importance of multi-pollutant measurements and modeling techniques to disentangle sources of UFPs contributing to the complex urban air pollution mixture and to evaluate population health risks.


Asunto(s)
Contaminantes Atmosféricos/efectos adversos , Aeropuertos , Asma , Exposición por Inhalación , Material Particulado/efectos adversos , Neumonía , Adulto , Asma/sangre , Asma/inducido químicamente , Estudios Cruzados , Humanos , Exposición por Inhalación/análisis , Exposición por Inhalación/estadística & datos numéricos , Interleucina-6/sangre , Neumonía/sangre , Neumonía/inducido químicamente , Distribución Aleatoria
18.
Environ Res ; 157: 153-159, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28558263

RESUMEN

Although it has been shown that traffic-related air pollution adversely affects children's lung function, few studies have examined the influence of traffic noise on this association, despite both sharing a common source. Estimates of noise exposure (Ldn, dB), and freeway and non-freeway emission concentrations of oxides of nitrogen (NOx, ppb) were spatially assigned to children in Southern California who were tested for forced vital capacity (FVC, n=1345), forced expiratory volume in 1s, (FEV1, n=1332), and asthma. The associations between traffic-related NOx and these outcomes, with and without adjustment for noise, were examined using mixed effects models. Adjustment for noise strengthened the association between NOx and reduced lung function. A 14.5mL (95% CI -40.0, 11.0mL) decrease in FVC per interquartile range (13.6 ppb) in freeway NOx was strengthened to a 34.6mL decrease after including a non-linear function of noise (95% CI -66.3, -2.78mL). Similarly, a 6.54mL decrease in FEV1 (95% CI -28.3, 15.3mL) was strengthened to a 21.1mL decrease (95% CI -47.6, 5.51) per interquartile range in freeway NOx. Our results indicate that where possible, noise should be included in epidemiological studies of the association between traffic-related air pollution on lung function. Without taking noise into account, the detrimental effects of traffic-related pollution may be underestimated.


Asunto(s)
Contaminantes Atmosféricos/toxicidad , Exposición a Riesgos Ambientales , Óxidos de Nitrógeno/toxicidad , Ruido del Transporte/efectos adversos , Emisiones de Vehículos/toxicidad , Adolescente , Asma/inducido químicamente , Asma/epidemiología , California/epidemiología , Niño , Preescolar , Femenino , Volumen Espiratorio Forzado , Humanos , Los Angeles/epidemiología , Masculino , Capacidad Vital
19.
Sensors (Basel) ; 16(12)2016 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-27918484

RESUMEN

A novel portable wireless volatile organic compound (VOC) monitoring device with disposable sensors is presented. The device is miniaturized, light, easy-to-use, and cost-effective. Different field tests have been carried out to identify the operational, analytical, and functional performance of the device and its sensors. The device was compared to a commercial photo-ionization detector, gas chromatography-mass spectrometry, and carbon monoxide detector. In addition, environmental operational conditions, such as barometric change, temperature change and wind conditions were also tested to evaluate the device performance. The multiple comparisons and tests indicate that the proposed VOC device is adequate to characterize personal exposure in many real-world scenarios and is applicable for personal daily use.


Asunto(s)
Monitoreo del Ambiente/instrumentación , Compuestos Orgánicos Volátiles/análisis , Dispositivos Electrónicos Vestibles , Tecnología Inalámbrica , Contaminantes Atmosféricos/análisis , Calibración , Monóxido de Carbono/análisis , Diseño de Equipo , Cromatografía de Gases y Espectrometría de Masas , Humanos , Hidrocarburos/análisis , Sulfuro de Hidrógeno/análisis , Reproducibilidad de los Resultados , Temperatura , Viento
20.
Atmos Environ (1994) ; 139: 20-29, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27795692

RESUMEN

Ultrafine particle number (UFPN) and size distributions, black carbon, and nitrogen dioxide concentrations were measured downwind of two of the busiest airports in the world, Los Angeles International Airport (LAX) and Hartsfield-Jackson International Airport (ATL - Atlanta, GA) using a mobile monitoring platform. Transects were located between 5 km and 10 km from the ATL and LAX airports. In addition, measurements were taken at 43 additional urban neighborhood locations in each city and on freeways. We found a 3-5 fold increase in UFPN concentrations in transects under the landing approach path to both airports relative to surrounding urban areas with similar ground traffic characteristics. The latter UFPN concentrations measured were distinct in size distributional properties from both freeways and across urban neighborhoods, clearly indicating different sources. Elevated concentrations of Black Carbon (BC) and NO2 were also observed on airport transects, and the corresponding pattern of elevated BC was consistent with the observed excess UFPN concentrations relative to other urban locations.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...