Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 143
Filtrar
1.
Mov Disord ; 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38671545

RESUMEN

BACKGROUND/OBJECTIVE: The corticobasal syndrome (CBS) is a complex asymmetric movement disorder, with cognitive impairment. Although commonly associated with the primary 4-repeat-tauopathy of corticobasal degeneration, clinicopathological correlation is poor, and a significant proportion is due to Alzheimer's disease (AD). Synaptic loss is a pathological feature of many clinical and preclinical tauopathies. We therefore measured the degree of synaptic loss in patients with CBS and tested whether synaptic loss differed according to ß-amyloid status. METHODS: Twenty-five people with CBS, and 32 age-/sex-/education-matched healthy controls participated. Regional synaptic density was estimated by [11C]UCB-J non-displaceable binding potential (BPND), AD-tau pathology by [18F]AV-1451 BPND, and gray matter volume by T1-weighted magnetic resonance imaging. Participants with CBS had ß-amyloid imaging with 11C-labeled Pittsburgh Compound-B ([11C]PiB) positron emission tomography. Symptom severity was assessed with the progressive supranuclear palsy-rating-scale, the cortical basal ganglia functional scale, and the revised Addenbrooke's Cognitive Examination. Regional differences in BPND and gray matter volume between groups were assessed by ANOVA. RESULTS: Compared to controls, patients with CBS had higher [18F]AV-1451 uptake, gray matter volume loss, and reduced synaptic density. Synaptic loss was more severe and widespread in the ß-amyloid negative group. Asymmetry of synaptic loss was in line with the clinically most affected side. DISCUSSION: Distinct patterns of [11C]UCB-J and [18F]AV-1451 binding and gray matter volume loss, indicate differences in the pathogenic mechanisms of CBS according to whether it is associated with the presence of Alzheimer's disease or not. This highlights the potential for different therapeutic strategies in CBSs. © 2024 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.

2.
Alzheimers Dement ; 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38629936

RESUMEN

INTRODUCTION: Cerebral small vessel disease (SVD) is a common cause of stroke/vascular dementia with few effective treatments. Neuroinflammation and increased blood-brain barrier (BBB) permeability may influence pathogenesis. In rodent models, minocycline reduced inflammation/BBB permeability. We determined whether minocycline had a similar effect in patients with SVD. METHODS: MINERVA was a single-center, phase II, randomized, double-blind, placebo-controlled trial. Forty-four participants with moderate-to-severe SVD took minocycline or placebo for 3 months. Co-primary outcomes were microglial signal (determined using 11C-PK11195 positron emission tomography) and BBB permeability (using dynamic contrast-enhanced MRI). RESULTS: Forty-four participants were recruited between September 2019 and June 2022. Minocycline had no effect on 11C-PK11195 binding (relative risk [RR] 1.01, 95% confidence interval [CI] 0.98-1.04), or BBB permeability (RR 0.97, 95% CI 0.91-1.03). Serum inflammatory markers were not affected. DISCUSSION: 11C-PK11195 binding and increased BBB permeability are present in SVD; minocycline did not reduce either process. Whether these pathophysiological mechanisms are disease-causing remains unclear. INTERNATIONAL CLINICAL TRIALS REGISTRY PORTAL IDENTIFIER: ISRCTN15483452 HIGHLIGHTS: We found focal areas of increased microglial signal and increased blood-brain barrier permeability in patients with small vessel disease. Minocycline treatment was not associated with a change in these processes measured using advanced neuroimaging. Blood-brain barrier permeability was dynamic but MRI-derived measurements correlated well with CSF/serum albumin ratio. Advanced neuroimaging is a feasible outcome measure for mechanistic clinical trials.

3.
Int J Stroke ; : 17474930241245613, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38533609

RESUMEN

BACKGROUND: Fatigue is a common symptom in cerebral small vessel disease (SVD), but its pathogenesis is poorly understood. It has been suggested that inflammation may play a role. We determined whether central (neuro) inflammation and peripheral inflammation were associated with fatigue in SVD. METHODS: Notably, 36 patients with moderate-to-severe SVD underwent neuropsychometric testing, combined positron emission tomography and magnetic resonance imaging (PET-MRI) scan, and blood draw for the analysis of inflammatory blood biomarkers. Microglial signal was taken as a proxy for neuroinflammation, assessed with radioligand 11C-PK11195. Of these, 30 subjects had full PET datasets for analysis. We assessed global 11C-PK11195 binding and hotspots of 11C-PK11195 binding in the normal-appearing white matter, lesioned tissue, and combined total white matter. Peripheral inflammation was assessed with serum C-reactive protein (CRP) and using the Olink cardiovascular III proteomic panel comprising 92 biomarkers of cardiovascular inflammation and endothelial activation. Fatigue was assessed using the fatigue severity scale (FSS), the visual analog fatigue scale, and a subscale of the Geriatric Depression Scale. RESULTS: Mean (SD) age was 68.7 (11.2) years, and 63.9% were male. Of these, 55.6% showed fatigue on the FSS. Fatigued participants had higher disability scores (p = 0.02), higher total GDS scores (p = 0.02), and more commonly reported a history of depression (p = 0.04). 11C-PK11195 ligand binding in the white matter was not associated with any measure of fatigue. Serum CRP was significantly associated with average fatigue score on FSS (ρ = 0.48, p = 0.004); this association persisted when controlling for age, sex, disability score, and depression (ß = 0.49, 95% CI (0.17, 2.26), p = 0.03). Blood biomarkers from the Olink panel showed no association with fatigue. CONCLUSION: In symptomatic SVD patients, neuroinflammation, assessed with microglial marker 11C-PK11195, was not associated with fatigue. We found some evidence for a role of systematic inflammation, evidenced by an association between fatigue severity and raised CRP, but further studies are required to understand this relationship and inform whether it could be therapeutically modified to reduce fatigue severity. DATA ACCESS STATEMENT: Data for this study are available from the corresponding author upon reasonable request.

4.
Brain ; 147(3): 923-935, 2024 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-37757857

RESUMEN

The development of dementia is a devastating aspect of Parkinson's disease (PD), affecting nearly half of patients within 10 years post-diagnosis. For effective therapies to prevent and slow progression to PD dementia (PDD), the key mechanisms that determine why some people with PD develop early dementia, while others remain cognitively unaffected, need to be understood. Neuroinflammation and tau protein accumulation have been demonstrated in post-mortem PD brains, and in many other neurodegenerative disorders leading to dementia. However, whether these processes mediate dementia risk early on in the PD disease course is not established. To this end, we used PET neuroimaging with 11C-PK11195 to index neuroinflammation and 18F-AV-1451 for misfolded tau in early PD patients, stratified according to dementia risk in our 'Neuroinflammation and Tau Accumulation in Parkinson's Disease Dementia' (NET-PDD) study. The NET-PDD study longitudinally assesses newly-diagnosed PD patients in two subgroups at low and high dementia risk (stratified based on pentagon copying, semantic fluency, MAPT genotype), with comparison to age- and sex-matched controls. Non-displaceable binding potential (BPND) in 43 brain regions (Hammers' parcellation) was compared between groups (pairwise t-tests), and associations between BPND of the tracers tested (linear-mixed-effect models). We hypothesized that people with higher dementia risk have greater inflammation and/or tau accumulation in advance of significant cognitive decline. We found significantly elevated neuroinflammation (11C-PK11195 BPND) in multiple subcortical and restricted cortical regions in the high dementia risk group compared with controls, while in the low-risk group this was limited to two cortical areas. The high dementia risk group also showed significantly greater neuroinflammation than the low-risk group concentrated on subcortical and basal ganglia regions. Neuroinflammation in most of these regions was associated with worse cognitive performance (Addenbrooke's Cognitive Examination-III score). Overall neuroinflammation burden also correlated with serum levels of pro-inflammatory cytokines. In contrast, increases in 18F-AV-1451 (tau) BPND in PD versus controls were restricted to subcortical regions where off-target binding is typically seen, with no relationship to cognition found. Whole-brain 18F-AV-1451 burden correlated with serum phosphorylated tau181 levels. Although there was minimal regional tau accumulation in PD, regional neuroinflammation and tau burden correlated in PD participants, with the strongest association in the high dementia risk group, suggesting possible co-localization of these pathologies. In conclusion, our findings suggest that significant regional neuroinflammation in early PD might underpin higher risk for PDD development, indicating neuroinflammation as a putative early modifiable aetiopathological disease factor to prevent or slow dementia development using immunomodulatory strategies.


Asunto(s)
Demencia , Enfermedad de Parkinson , Humanos , Enfermedad de Parkinson/complicaciones , Enfermedad de Parkinson/diagnóstico por imagen , Enfermedades Neuroinflamatorias , Demencia/diagnóstico por imagen , Ganglios Basales , Inflamación/complicaciones , Progresión de la Enfermedad
5.
Nat Commun ; 14(1): 8458, 2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-38114493

RESUMEN

There is extensive synaptic loss from frontotemporal lobar degeneration, in preclinical models and human in vivo and post mortem studies. Understanding the consequences of synaptic loss for network function is important to support translational models and guide future therapeutic strategies. To examine this relationship, we recruited 55 participants with syndromes associated with frontotemporal lobar degeneration and 24 healthy controls. We measured synaptic density with positron emission tomography using the radioligand [11C]UCB-J, which binds to the presynaptic vesicle glycoprotein SV2A, neurite dispersion with diffusion magnetic resonance imaging, and network function with task-free magnetic resonance imaging functional connectivity. Synaptic density and neurite dispersion in patients was associated with reduced connectivity beyond atrophy. Functional connectivity moderated the relationship between synaptic density and clinical severity. Our findings confirm the importance of synaptic loss in frontotemporal lobar degeneration syndromes, and the resulting effect on behaviour as a function of abnormal connectivity.


Asunto(s)
Demencia Frontotemporal , Degeneración Lobar Frontotemporal , Humanos , Demencia Frontotemporal/patología , Degeneración Lobar Frontotemporal/diagnóstico por imagen , Degeneración Lobar Frontotemporal/patología , Imagen por Resonancia Magnética/métodos , Imagen de Difusión por Resonancia Magnética , Síndrome , Tomografía de Emisión de Positrones , Encéfalo/patología
6.
Eur Radiol ; 33(9): 6168-6178, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37166494

RESUMEN

OBJECTIVES: To explore the relationship between indices of hypoxia and vascular function from 18F-fluoromisonidazole ([18F]-FMISO)-PET/MRI with immunohistochemical markers of hypoxia and vascularity in oestrogen receptor-positive (ER +) breast cancer. METHODS: Women aged > 18 years with biopsy-confirmed, treatment-naïve primary ER + breast cancer underwent [18F]-FMISO-PET/MRI prior to surgery. Parameters of vascular function were derived from DCE-MRI using the extended Tofts model, whilst hypoxia was assessed using the [18F]-FMISO influx rate constant, Ki. Histological tumour sections were stained with CD31, hypoxia-inducible factor (HIF)-1α, and carbonic anhydrase IX (CAIX). The number of tumour microvessels, median vessel diameter, and microvessel density (MVD) were obtained from CD31 immunohistochemistry. HIF-1α and CAIX expression were assessed using histoscores obtained by multiplying the percentage of positive cells stained by the staining intensity. Regression analysis was used to study associations between imaging and immunohistochemistry variables. RESULTS: Of the lesions examined, 14/22 (64%) were ductal cancers, grade 2 or 3 (19/22; 86%), with 17/22 (77%) HER2-negative. [18F]-FMISO Ki associated negatively with vessel diameter (p = 0.03), MVD (p = 0.02), and CAIX expression (p = 0.002), whilst no significant relationships were found between DCE-MRI pharmacokinetic parameters and immunohistochemical variables. HIF-1α did not significantly associate with any PET/MR imaging indices. CONCLUSION: Hypoxia measured by [18F]-FMISO-PET was associated with increased CAIX expression, low MVD, and smaller vessel diameters in ER + breast cancer, further corroborating the link between inadequate vascularity and hypoxia in ER + breast cancer. KEY POINTS: • Hypoxia, measured by [18F]-FMISO-PET, was associated with low microvessel density and small vessel diameters, corroborating the link between inadequate vascularity and hypoxia in ER + breast cancer. • Increased CAIX expression was associated with higher levels of hypoxia measured by [18F]-FMISO-PET. • Morphologic and functional abnormalities of the tumour microvasculature are the major determinants of hypoxia in cancers and support the previously reported perfusion-driven character of hypoxia in breast carcinomas.


Asunto(s)
Neoplasias de la Mama , Humanos , Femenino , Neoplasias de la Mama/patología , Inmunohistoquímica , Hipoxia , Imagen por Resonancia Magnética , Tomografía de Emisión de Positrones , Subunidad alfa del Factor 1 Inducible por Hipoxia
7.
Mov Disord ; 38(7): 1316-1326, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37171832

RESUMEN

BACKGROUND: Synaptic loss is characteristic of many neurodegenerative diseases; it occurs early and is strongly related to functional deficits. OBJECTIVE: In this longitudinal observational study, we determine the rate at which synaptic density is reduced in the primary tauopathies of progressive supranuclear palsy (PSP) and corticobasal degeneration (CBD), and we test the relationship with disease progression. METHODS: Our cross-sectional cohort included 32 participants with probable PSP and 16 with probable CBD (all amyloid-negative corticobasal syndrome), recruited from tertiary care centers in the United Kingdom, and 33 sex- and age-matched healthy control subjects. Synaptic density was estimated by positron emission tomography imaging with the radioligand [11 C]UCB-J that binds synaptic vesicle 2A. Clinical severity and cognition were assessed by the PSP Rating Scale and the Addenbrooke's cognitive examination. Regional [11 C]UCB-J nondisplaceable binding potential was estimated in Hammersmith Atlas regions of interest. Twenty-two participants with PSP/CBD had a follow-up [11 C]UCB-J positron emission tomography scan after 1 year. We calculated the annualized change in [11 C]UCB-J nondisplaceable binding potential and correlated this with the change in clinical severity. RESULTS: We found significant annual synaptic loss within the frontal lobe (-3.5%, P = 0.03) and the right caudate (-3.9%, P = 0.046). The degree of longitudinal synaptic loss within the frontal lobe correlated with the rate of change in the PSP Rating Scale (R = 0.47, P = 0.03) and cognition (Addenbrooke's Cognitive Examination-Revised, R = -0.62, P = 0.003). CONCLUSIONS: We provide in vivo evidence for rapid progressive synaptic loss, correlating with clinical progression in primary tauopathies. Synaptic loss may be an important therapeutic target and outcome variable for early-phase clinical trials of disease-modifying treatments. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Asunto(s)
Trastornos del Movimiento , Parálisis Supranuclear Progresiva , Tauopatías , Humanos , Estudios Transversales , Tomografía de Emisión de Positrones/métodos , Tauopatías/diagnóstico por imagen , Tauopatías/metabolismo , Parálisis Supranuclear Progresiva/diagnóstico , Trastornos del Movimiento/metabolismo , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo
8.
Brain ; 146(8): 3221-3231, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-36883644

RESUMEN

Frontotemporal dementia is clinically and neuropathologically heterogeneous, but neuroinflammation, atrophy and cognitive impairment occur in all of its principal syndromes. Across the clinical spectrum of frontotemporal dementia, we assess the predictive value of in vivo neuroimaging measures of microglial activation and grey-matter volume on the rate of future cognitive decline. We hypothesized that inflammation is detrimental to cognitive performance, in addition to the effect of atrophy. Thirty patients with a clinical diagnosis of frontotemporal dementia underwent a baseline multimodal imaging assessment, including [11C]PK11195 PET to index microglial activation and structural MRI to quantify grey-matter volume. Ten people had behavioural variant frontotemporal dementia, 10 had the semantic variant of primary progressive aphasia and 10 had the non-fluent agrammatic variant of primary progressive aphasia. Cognition was assessed at baseline and longitudinally with the revised Addenbrooke's Cognitive Examination, at an average of 7-month intervals (for an average of ∼2 years, up to ∼5 years). Regional [11C]PK11195 binding potential and grey-matter volume were determined, and these were averaged within four hypothesis-driven regions of interest: bilateral frontal and temporal lobes. Linear mixed-effect models were applied to the longitudinal cognitive test scores, with [11C]PK11195 binding potentials and grey-matter volumes as predictors of cognitive performance, with age, education and baseline cognitive performance as covariates. Faster cognitive decline was associated with reduced baseline grey-matter volume and increased microglial activation in frontal regions, bilaterally. In frontal regions, microglial activation and grey-matter volume were negatively correlated, but provided independent information, with inflammation the stronger predictor of the rate of cognitive decline. When clinical diagnosis was included as a factor in the models, a significant predictive effect was found for [11C]PK11195 BPND in the left frontal lobe (-0.70, P = 0.01), but not for grey-matter volumes (P > 0.05), suggesting that inflammation severity in this region relates to cognitive decline regardless of clinical variant. The main results were validated by two-step prediction frequentist and Bayesian estimation of correlations, showing significant associations between the estimated rate of cognitive change (slope) and baseline microglial activation in the frontal lobe. These findings support preclinical models in which neuroinflammation (by microglial activation) accelerates the neurodegenerative disease trajectory. We highlight the potential for immunomodulatory treatment strategies in frontotemporal dementia, in which measures of microglial activation may also improve stratification for clinical trials.


Asunto(s)
Afasia Progresiva Primaria , Disfunción Cognitiva , Demencia Frontotemporal , Enfermedades Neurodegenerativas , Enfermedad de Pick , Humanos , Demencia Frontotemporal/metabolismo , Enfermedades Neuroinflamatorias , Enfermedades Neurodegenerativas/patología , Microglía/metabolismo , Teorema de Bayes , Lóbulo Frontal/patología , Enfermedad de Pick/patología , Disfunción Cognitiva/metabolismo , Imagen por Resonancia Magnética/métodos , Inflamación/patología , Atrofia/patología , Afasia Progresiva Primaria/patología
9.
Stroke ; 54(2): 549-557, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36621823

RESUMEN

BACKGROUND: Recent studies have demonstrated increased microglial activation using 11C-PK11195 positron emission tomography imaging, indicating central nervous system inflammation, in cerebral small vessel disease. However, whether such areas of neuroinflammation progress to tissue damage is uncertain. We determined whether white matter destined to become white matter hyperintensities (WMH) at 1 year had evidence of altered inflammation at baseline. METHODS: Forty subjects with small vessel disease (20 sporadic and 20 cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy) and 20 controls were recruited to this case-control observational study from in- and out-patient clinics at Addenbrooke's Hospital, Cambridge, UK and imaged at baseline with both 11C-PK11195 positron emission tomography and magnetic resonance imaging; and magnetic resonance imaging including diffusion tensor imaging was repeated at 1 year. WMH were segmented at baseline and 1 year, and areas of new lesion identified. Baseline 11C-PK11195 binding potential and diffusion tensor imaging parameters in these voxels, and normal appearing white matter, was measured. RESULTS: Complete positron emission tomography-magnetic resonance imaging data was available for 17 controls, 16 sporadic small vessel disease, and 14 cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy participants. 11C-PK11195 binding in voxels destined to become new WMH was lower than in normal appearing white matter, which did not progress to WMH (-0.133[±0.081] versus -0.045 [±0.044]; P<0.001). Mean diffusivity was higher and mean fractional anisotropy lower in new WMH voxels than in normal appearing white matter (900 [±80]×10-6 versus 1045 [±149]×10-6 mm2/s and 0.37±0.05 versus 0.29±0.06, both P<0.001) consistent with new WMH showing tissue damage on diffusion tensor imaging a year prior to developing into new WMH; similar results were seen across the 3 groups. CONCLUSIONS: White matter tissue destined to develop into new WMH over the subsequent year is associated with both lower neuroinflammation, and white matter ultrastructural damage at baseline. Our results suggest that this tissue is already damaged 1 year prior to lesion formation. This may reflect that the role of neuroinflammation in the lesion development process occurs at an early stage, although more studies over a longer period would be needed to investigate this further.


Asunto(s)
CADASIL , Leucoencefalopatías , Sustancia Blanca , Humanos , Imagen de Difusión Tensora , CADASIL/metabolismo , Sustancia Blanca/patología , Enfermedades Neuroinflamatorias , Imagen por Resonancia Magnética/métodos , Infarto Cerebral/patología , Leucoencefalopatías/patología , Tomografía de Emisión de Positrones , Inflamación/patología , Encéfalo/patología
11.
J Am Coll Cardiol ; 81(4): 336-354, 2023 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-36697134

RESUMEN

BACKGROUND: Assessing inflammatory disease activity in large vessel vasculitis (LVV) can be challenging by conventional measures. OBJECTIVES: We aimed to investigate somatostatin receptor 2 (SST2) as a novel inflammation-specific molecular imaging target in LVV. METHODS: In a prospective, observational cohort study, in vivo arterial SST2 expression was assessed by positron emission tomography/magnetic resonance imaging (PET/MRI) using 68Ga-DOTATATE and 18F-FET-ßAG-TOCA. Ex vivo mapping of the imaging target was performed using immunofluorescence microscopy; imaging mass cytometry; and bulk, single-cell, and single-nucleus RNA sequencing. RESULTS: Sixty-one participants (LVV: n = 27; recent atherosclerotic myocardial infarction of ≤2 weeks: n = 25; control subjects with an oncologic indication for imaging: n = 9) were included. Index vessel SST2 maximum tissue-to-blood ratio was 61.8% (P < 0.0001) higher in active/grumbling LVV than inactive LVV and 34.6% (P = 0.0002) higher than myocardial infarction, with good diagnostic accuracy (area under the curve: ≥0.86; P < 0.001 for both). Arterial SST2 signal was not elevated in any of the control subjects. SST2 PET/MRI was generally consistent with 18F-fluorodeoxyglucose PET/computed tomography imaging in LVV patients with contemporaneous clinical scans but with very low background signal in the brain and heart, allowing for unimpeded assessment of nearby coronary, myocardial, and intracranial artery involvement. Clinically effective treatment for LVV was associated with a 0.49 ± 0.24 (standard error of the mean [SEM]) (P = 0.04; 22.3%) reduction in the SST2 maximum tissue-to-blood ratio after 9.3 ± 3.2 months. SST2 expression was localized to macrophages, pericytes, and perivascular adipocytes in vasculitis specimens, with specific receptor binding confirmed by autoradiography. SSTR2-expressing macrophages coexpressed proinflammatory markers. CONCLUSIONS: SST2 PET/MRI holds major promise for diagnosis and therapeutic monitoring in LVV. (PET Imaging of Giant Cell and Takayasu Arteritis [PITA], NCT04071691; Residual Inflammation and Plaque Progression Long-Term Evaluation [RIPPLE], NCT04073810).


Asunto(s)
Aterosclerosis , Arteritis de Células Gigantes , Infarto del Miocardio , Arteritis de Takayasu , Humanos , Receptores de Somatostatina , Estudios Prospectivos , Fluorodesoxiglucosa F18 , Inflamación/diagnóstico por imagen , Tomografía de Emisión de Positrones/métodos , Imagen por Resonancia Magnética , Vasos Coronarios/patología , Aterosclerosis/diagnóstico por imagen , Radiofármacos/farmacología
12.
Ann Neurol ; 93(1): 142-154, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36321699

RESUMEN

OBJECTIVE: Synaptic loss is an early feature of neurodegenerative disease models, and is severe in post mortem clinical studies, including frontotemporal dementia. Positron emission tomography (PET) with radiotracers that bind to synaptic vesicle glycoprotein 2A enables quantification of synaptic density in vivo. This study used [11 C]UCB-J PET in participants with behavioral variant frontotemporal dementia (bvFTD), testing the hypothesis that synaptic loss is severe and related to clinical severity. METHODS: Eleven participants with clinically probable bvFTD and 25 age- and sex-matched healthy controls were included. Participants underwent dynamic [11 C]UCB-J PET, structural magnetic resonance imaging, and a neuropsychological battery, including the revised Addenbrooke Cognitive Examination, and INECO frontal screening. General linear models compared [11 C]UCB-J binding potential maps and gray matter volume between groups, and assessed associations between synaptic density and clinical severity in patients. Analyses were also performed using partial volume corrected [11 C]UCB-J binding potential from regions of interest (ROIs). RESULTS: Patients with bvFTD showed severe synaptic loss compared to controls. [11 C]UCB-J binding was reduced bilaterally in medial and dorsolateral frontal regions, inferior frontal gyri, anterior and posterior cingulate gyrus, insular cortex, and medial temporal lobe. Synaptic loss in the frontal and cingulate regions correlated significantly with cognitive impairments. Synaptic loss was more severe than atrophy. Results from ROI-based analyses mirrored the voxelwise results. INTERPRETATION: In accordance with preclinical models, and human postmortem evidence, there is widespread frontotemporal loss of synapses in symptomatic bvFTD, in proportion to severity. [11 C]UCB-J PET could support translational studies and experimental medicine strategies for new disease-modifying treatments for neurodegeneration. ANN NEUROL 2023;93:142-154.


Asunto(s)
Demencia Frontotemporal , Enfermedades Neurodegenerativas , Enfermedad de Pick , Humanos , Demencia Frontotemporal/diagnóstico por imagen , Demencia Frontotemporal/metabolismo , Tomografía de Emisión de Positrones/métodos , Lóbulo Frontal , Encéfalo/metabolismo
13.
Nat Neurosci ; 25(11): 1569-1581, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36303070

RESUMEN

Neurotransmitter receptors support the propagation of signals in the human brain. How receptor systems are situated within macro-scale neuroanatomy and how they shape emergent function remain poorly understood, and there exists no comprehensive atlas of receptors. Here we collate positron emission tomography data from more than 1,200 healthy individuals to construct a whole-brain three-dimensional normative atlas of 19 receptors and transporters across nine different neurotransmitter systems. We found that receptor profiles align with structural connectivity and mediate function, including neurophysiological oscillatory dynamics and resting-state hemodynamic functional connectivity. Using the Neurosynth cognitive atlas, we uncovered a topographic gradient of overlapping receptor distributions that separates extrinsic and intrinsic psychological processes. Finally, we found both expected and novel associations between receptor distributions and cortical abnormality patterns across 13 disorders. We replicated all findings in an independently collected autoradiography dataset. This work demonstrates how chemoarchitecture shapes brain structure and function, providing a new direction for studying multi-scale brain organization.


Asunto(s)
Mapeo Encefálico , Neocórtex , Humanos , Mapeo Encefálico/métodos , Neocórtex/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Encéfalo/fisiología , Tomografía de Emisión de Positrones , Neurotransmisores
14.
Eur Stroke J ; 7(3): 323-330, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36082255

RESUMEN

Background: Cerebral small vessel disease (SVD) is a common cause of stroke and cognitive impairment. Recent data has implicated neuroinflammation and increased blood-brain barrier (BBB) permeability in its pathogenesis, but whether such processes are causal and can be therapeutically modified is uncertain. In a rodent model of SVD, minocycline was associated with reduced white matter lesions, inflammation and BBB permeability. Aims: To determine whether blood-brain barrier permeability (measured using dynamic contrast-enhanced MRI) and microglial activation (measured by positron emission tomography using the radioligand 11C-PK11195) can be modified in SVD. Design: Phase II randomised double blind, placebo-controlled trial of minocycline 100 mg twice daily for 3 months in 44 participants with moderate to severe SVD defined as a clinical lacunar stroke and confluent white matter hyperintensities. Outcomes: Primary outcome measures are volume and intensity of focal increases of blood-brain barrier permeability and microglial activation determined using PET-MRI imaging. Secondary outcome measures include inflammatory biomarkers in serum, and change in conventional MRI markers and cognitive performance over 1 year follow up. Discussion: The MINERVA trial aims to test whether minocycline can influence novel pathological processes thought to be involved in SVD progression, and will provide insights into whether central nervous system inflammation in SVD can be therapeutically modulated.

15.
Neurobiol Aging ; 119: 36-45, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35964542

RESUMEN

This study investigates whether tau has (i) an independent effect from amyloid-ß on changes in cognitive and functional performance and (ii) a synergistic relationship with amyloid-ß in the exacerbation of decline in aging Down syndrome (DS). 105 participants with DS underwent baseline PET [18F]-AV1451 and PET [11C]PiB scans to quantify tau deposition in Braak regions II-VI and the Striatum and amyloid-ß status respectively. Linear Mixed Effects models were implemented to assess how tau and amyloid-ß deposition are related to change over three time points. Tau was a significant independent predictor of cognitive and functional change. The three-way interaction between time, [11C]PiB status and tau was significant in the models of episodic memory and visuospatial cognition. Baseline tau is a significant predictor of cognitive and functional decline, over and above the effect of amyloid-ß status. Results suggest a synergistic relationship between amyloid-ß status and tau as predictors of change in memory and visuospatial cognition.


Asunto(s)
Péptidos beta-Amiloides , Disfunción Cognitiva , Síndrome de Down , Proteínas tau , Péptidos beta-Amiloides/metabolismo , Encéfalo/metabolismo , Cognición/fisiología , Envejecimiento Cognitivo/fisiología , Disfunción Cognitiva/metabolismo , Disfunción Cognitiva/psicología , Síndrome de Down/diagnóstico por imagen , Síndrome de Down/metabolismo , Síndrome de Down/psicología , Humanos , Tomografía de Emisión de Positrones/métodos , Proteínas tau/metabolismo
16.
Nat Neurosci ; 25(6): 771-782, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35618951

RESUMEN

How does the organization of neural information processing enable humans' sophisticated cognition? Here we decompose functional interactions between brain regions into synergistic and redundant components, revealing their distinct information-processing roles. Combining functional and structural neuroimaging with meta-analytic results, we demonstrate that redundant interactions are predominantly associated with structurally coupled, modular sensorimotor processing. Synergistic interactions instead support integrative processes and complex cognition across higher-order brain networks. The human brain leverages synergistic information to a greater extent than nonhuman primates, with high-synergy association cortices exhibiting the highest degree of evolutionary cortical expansion. Synaptic density mapping from positron emission tomography and convergent molecular and metabolic evidence demonstrate that synergistic interactions are supported by receptor diversity and human-accelerated genes underpinning synaptic function. This information-resolved approach provides analytic tools to disentangle information integration from coupling, enabling richer, more accurate interpretations of functional connectivity, and illuminating how the human neurocognitive architecture navigates the trade-off between robustness and integration.


Asunto(s)
Mapeo Encefálico , Imagen por Resonancia Magnética , Animales , Encéfalo/fisiología , Mapeo Encefálico/métodos , Cognición , Humanos , Imagen por Resonancia Magnética/métodos , Vías Nerviosas/fisiología , Neuroimagen
17.
Alzheimers Dement (Amst) ; 14(1): e12288, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35386472

RESUMEN

Introduction: The Down syndrome population has a high prevalence for dementia, often showing their first clinical symptoms in their 40s. Methods: In a longitudinal cohort, we investigate whether amyloid deposition at time point 1 (TP1) could predict cortical thickness change at time point 2 (TP2). The association between tau burden and cortical thickness was also examined at time point 3 (TP3). Results: Between TP1 and TP2 there was pronounced cortical thinning in temporo-parietal cortices and cortical thickening in the frontal cortex. Baseline amyloid burden was strongly associated to cortical thinning progression, especially in the temporo-parietal regions. At TP3, tau deposition negatively correlated with cortical atrophy in regions where tau usually accumulates at later Braak stages. Discussion: A higher amount of amyloid accumulation triggers a cascade of changes of disease-causing processes that eventually lead to dementia. As expected, we found that regions where tau usually accumulates were those also displaying high levels of cortical atrophy.

18.
Neurobiol Aging ; 115: 112-121, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35418341

RESUMEN

Down's syndrome results from trisomy of chromosome 21, a genetic change which also confers a probable 100% risk for the development of Alzheimer's disease neuropathology (amyloid plaque and neurofibrillary tangle formation) in later life. We aimed to assess the effectiveness of diffusion-weighted imaging and connectomic modelling for predicting brain amyloid plaque burden, baseline cognition and longitudinal cognitive change using support vector regression. Ninety-five participants with Down's syndrome successfully completed a full Pittsburgh Compound B (PiB) PET-MR protocol and memory assessment at two timepoints. Our findings indicate that graph theory metrics of node degree and strength based on the structural connectome are effective predictors of global amyloid deposition. We also show that connection density of the structural network at baseline is a promising predictor of current cognitive performance. Directionality of effects were mainly significant reductions in the white matter connectivity in relation to both PiB+ status and greater rate of cognitive decline. Taken together, these results demonstrate the integral role of the white matter during neuropathological progression and the utility of machine learning methodology for non-invasively evaluating Alzheimer's disease prognosis.


Asunto(s)
Enfermedad de Alzheimer , Amiloidosis , Síndrome de Down , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/patología , Amiloide/metabolismo , Proteínas Amiloidogénicas , Amiloidosis/patología , Encéfalo/metabolismo , Cognición , Síndrome de Down/psicología , Humanos , Placa Amiloide/diagnóstico por imagen , Placa Amiloide/patología , Máquina de Vectores de Soporte
19.
Brain ; 145(1): 340-348, 2022 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-34398211

RESUMEN

The relationship between in vivo synaptic density and molecular pathology in primary tauopathies is key to understanding the impact of tauopathy on functional decline and in informing new early therapeutic strategies. In this cross-sectional observational study, we determine the in vivo relationship between synaptic density and molecular pathology in the primary tauopathies of progressive supranuclear palsy and corticobasal degeneration as a function of disease severity. Twenty-three patients with progressive supranuclear palsy and 12 patients with corticobasal syndrome were recruited from a tertiary referral centre. Nineteen education-, sex- and gender-matched control participants were recruited from the National Institute for Health Research 'Join Dementia Research' platform. Cerebral synaptic density and molecular pathology, in all participants, were estimated using PET imaging with the radioligands 11C-UCB-J and 18F-AV-1451, respectively. Patients with corticobasal syndrome also underwent amyloid PET imaging with 11C-PiB to exclude those with likely Alzheimer's pathology-we refer to the amyloid-negative cohort as having corticobasal degeneration, although we acknowledge other underlying pathologies exist. Disease severity was assessed with the progressive supranuclear palsy rating scale; regional non-displaceable binding potentials of 11C-UCB-J and 18F-AV-1451 were estimated in regions of interest from the Hammersmith Atlas, excluding those with known off-target binding for 18F-AV-1451. As an exploratory analysis, we also investigated the relationship between molecular pathology in cortical brain regions and synaptic density in subcortical areas. Across brain regions, there was a positive correlation between 11C-UCB-J and 18F-AV-1451 non-displaceable binding potentials (ß = 0.4, t = 3.6, P = 0.001), independent of age or time between PET scans. However, this correlation became less positive as a function of disease severity in patients (ß = -0.02, t = -2.9, P = 0.007, R = -0.41). Between regions, cortical 18F-AV-1451 binding was negatively correlated with synaptic density in subcortical areas (caudate nucleus, putamen). Brain regions with higher synaptic density are associated with a higher 18F-AV-1451 binding in progressive supranuclear palsy/corticobasal degeneration, but this association diminishes with disease severity. Moreover, higher cortical 18F-AV-1451 binding correlates with lower subcortical synaptic density. Longitudinal imaging is required to confirm the mediation of synaptic loss by molecular pathology. However, the effect of disease severity suggests a biphasic relationship between synaptic density and molecular pathology with synapse-rich regions vulnerable to accrual of pathological aggregates, followed by a loss of synapses in response to the molecular pathology. Given the importance of synaptic function for cognition and action, our study elucidates the pathophysiology of primary tauopathies and may inform the design of future clinical trials.


Asunto(s)
Enfermedad de Alzheimer , Parálisis Supranuclear Progresiva , Tauopatías , Enfermedad de Alzheimer/patología , Encéfalo/patología , Carbolinas , Radioisótopos de Carbono/metabolismo , Estudios Transversales , Humanos , Patología Molecular , Tomografía de Emisión de Positrones/métodos , Piridinas , Pirrolidinonas , Parálisis Supranuclear Progresiva/metabolismo , Tauopatías/metabolismo , Proteínas tau/metabolismo
20.
J Nucl Med ; 63(7): 1052-1057, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-34795013

RESUMEN

Progressive supranuclear palsy (PSP) is a neurodegenerative disorder characterized by neuroglial tau pathology. A new staging system for PSP pathology postmortem has been described and validated. We used a data-driven approach to test whether postmortem pathologic staging in PSP can be reproduced in vivo with 18F-flortaucipir PET. Methods: Forty-two patients with probable PSP and 39 controls underwent 18F-flortaucipir PET. Conditional inference tree analyses on regional binding potential values identified absent/present pathology thresholds to define in vivo staging. Following the postmortem staging approach for PSP pathology, we evaluated the combinations of absent/present pathology (or abnormal/normal PET signal) across all regions to assign each participant to in vivo stages. ANOVA was applied to analyze differences among means of disease severity between stages. In vivo staging was compared with postmortem staging in 9 patients who also had postmortem confirmation of the diagnosis and stage. Results: Stage assignment was estimable in 41 patients: 10, 26, and 5 patients were classified in stage I/II, stage III/IV, and stage V/VI, respectively, whereas 1 patient was not classifiable. Explorative substaging identified 2 patients in stage I, 8 in stage II, 9 in stage III, 17 in stage IV, and 5 in stage V. However, the nominal 18F-flortaucipir--derived stage was not associated with clinical severity and was not indicative of pathology staging postmortem. Conclusion:18F-flortaucipir PET in vivo does not correspond to neuropathologic staging in PSP. This analytic approach, seeking to mirror in vivo neuropathology staging with PET-to-autopsy correlational analyses, might enable in vivo staging with next-generation tau PET tracers; however, further evidence and comparisons with postmortem data are needed.


Asunto(s)
Parálisis Supranuclear Progresiva , Carbolinas , Humanos , Tomografía de Emisión de Positrones , Parálisis Supranuclear Progresiva/complicaciones , Parálisis Supranuclear Progresiva/diagnóstico por imagen , Parálisis Supranuclear Progresiva/patología , Proteínas tau/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA