Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Alzheimers Res Ther ; 16(1): 183, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39143583

RESUMEN

BACKGROUND: Alzheimer's disease (AD) is the most prevalent dementia, showing higher incidence in women. Besides, lipids play an essential role in brain, and they could be dysregulated in neurodegeneration. Specifically, impaired plasma lipid levels could predict early AD diagnosis. This work aims to identify the main plasma lipids altered in early AD female mouse model and evaluate their relationship with brain lipidome. Also, the possible involvement of the estrous cycle in lipid metabolism has been evaluated. METHODS: Plasma samples of wild-type (n = 10) and APP/PS1 (n = 10) female mice of 5 months of age were collected, processed, and analysed using a lipidomic mass spectrometry-based method. A statistical analysis involving univariate and multivariate approaches was performed to identify significant lipid differences related to AD between groups. Also, cytology tests were conducted to confirm estrous cycle phases. RESULTS: Three hundred thirty lipids were detected in plasma, 18 of them showed significant differences between groups; specifically, some triacylglycerols, cholesteryl esters, lysophosphatidylcholines, phosphatidylcholines, and ether-linked phosphatidylcholines, increased in early AD; while other phosphatidylcholines, phosphatidylethanolamines, ceramides, and ether-linked phosphatidylethanolamines decreased in early AD. A multivariate approach was developed from some lipid variables, showing high diagnostic indexes (70% sensitivity, 90% specificity, 80% accuracy). From brain and plasma lipidome, some significant correlations were observed, mainly in the glycerophospholipid family. Also, some differences were found in both plasma and brain lipids, according to the estrous cycle phase. CONCLUSIONS: Therefore, lipid alterations can be identified in plasma at early AD stages in mice females, with a relationship with brain lipid metabolism for most of the lipid subfamilies, suggesting some lipids as potential AD biomarkers. In addition, the estrous cycle monitoring could be relevant in female studies.


Asunto(s)
Enfermedad de Alzheimer , Precursor de Proteína beta-Amiloide , Encéfalo , Modelos Animales de Enfermedad , Ciclo Estral , Lipidómica , Lípidos , Ratones Transgénicos , Animales , Femenino , Ciclo Estral/fisiología , Ciclo Estral/sangre , Lipidómica/métodos , Enfermedad de Alzheimer/sangre , Enfermedad de Alzheimer/metabolismo , Encéfalo/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/sangre , Precursor de Proteína beta-Amiloide/genética , Lípidos/sangre , Presenilina-1/genética , Ratones , Metabolismo de los Lípidos/fisiología , Ratones Endogámicos C57BL
2.
Free Radic Biol Med ; 215: 56-63, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38417685

RESUMEN

Carrying an allele 4 of the apolipoprotein E (ApoE) is the best-established genetic risk factor to develop Alzheimer's disease (AD). Fifty percent of ApoE4/4 individuals develop the disease at 70 years of age. ApoE3/4 carriers have a lower risk of developing the disease, still 50% of them suffer AD at around 80 years. In a previous study we showed that healthy young individuals, who had a parent with AD and were carriers of at least one ApoE4 allele displayed reductive stress. This was evidenced as a decrease in oxidative markers, such as oxidized glutathione, p-p38, and NADP+/NADPH ratio, and an increase of antioxidant enzymes, such as glutathione peroxidase (Gpx1) and both the catalytic and regulatory subunits of glutamyl-cysteinyl (GCLM and GCLC). Moreover, we found an increase in stress-related proteins involved in tau physiopathology. Now, 10 years later, we have conducted a follow-up study measuring the same parameters in the same cohort. Our results show that reductive stress has reversed, as we could now observe an increase in lipid peroxidation and in the oxidation of glutathione along with a decrease in the expression of Gpx1 and SOD1 antioxidant enzymes in ApoE4 carriers. Furthermore, we found an increase in plasma levels of IL1ß levels and in PKR (eukaryotic translation initiation factor 2 alpha kinase 2) gene expression in isolated lymphocytes. Altogether, our results suggest that, in the continuum of Alzheimer's disease, people at risk of developing the disease go through different redox phases, from stablished reductive stress to oxidative stress.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Enfermedad de Alzheimer/metabolismo , Apolipoproteína E4/genética , Estudios de Seguimiento , Antioxidantes/metabolismo , Apolipoproteínas E/genética , Oxidación-Reducción
3.
Sci Rep ; 14(1): 870, 2024 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-38195731

RESUMEN

Lipids are the major component of the brain with important structural and functional properties. Lipid disruption could play a relevant role in Alzheimer's disease (AD). Some brain lipidomic studies showed significant differences compared to controls, but few studies have focused on different brain areas related to AD. Furthermore, AD is more prevalent in females, but there is a lack of studies focusing on this sex. This work aims to perform a lipidomic study in selected brain areas (cerebellum, amygdala, hippocampus, entire cortex) from wild-type (WT, n = 10) and APPswe/PS1dE9 transgenic (TG, n = 10) female mice of 5 months of age, as a model of early AD, to identify alterations in lipid composition. A lipidomic mass spectrometry-based method was optimized and applied to brain tissue. As result, some lipids showed statistically significant differences between mice groups in cerebellum (n = 68), amygdala (n = 49), hippocampus (n = 48), and the cortex (n = 22). In addition, some lipids (n = 15) from the glycerolipid, phospholipid, and sphingolipid families were statistically significant in several brain areas simultaneously between WT and TG. A selection of lipid variables was made to develop a multivariate approach to assess their discriminant potential, showing high diagnostic indexes, especially in cerebellum and amygdala (sensitivity 70-100%, sensibility 80-100%).


Asunto(s)
Enfermedad de Alzheimer , Animales , Ratones , Femenino , Humanos , Ratones Transgénicos , Enfermedad de Alzheimer/genética , Lipidómica , Encéfalo , Modelos Animales de Enfermedad , Fosfolípidos
5.
J Alzheimers Dis ; 96(4): 1399-1409, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38007649

RESUMEN

There are several implications of the surge in the incidence of pandemics and epidemics in the last decades. COVID-19 being the most remarkable one, showed the vulnerability of patients with neurodegenerative diseases like Alzheimer's disease (AD). This review studies the pathological interlinks and triggering factors between the two illnesses and proposes a multifactorial pathway of AD causation due to COVID-19. The article evaluates and describes all the postulated hypotheses which explain the etiology and possible pathogenesis of the disease in four domains: Inflammation & Neurobiochemical interactions, Oxidative Stress, Genetic Factors, and Social Isolation. We believe that a probable hypothesis of an underlying cause of AD after COVID-19 infection could be the interplay of all these factors.


Asunto(s)
Enfermedad de Alzheimer , COVID-19 , Humanos , Enfermedad de Alzheimer/epidemiología , Enfermedad de Alzheimer/etiología , Enfermedad de Alzheimer/metabolismo , COVID-19/complicaciones , Inflamación/complicaciones , Estrés Oxidativo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...