Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Environ Res ; 244: 117783, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38048862

RESUMEN

Although bone marrow mesenchymal stem cells (BM-MSCs)-derived exosomes have been reported to be closely associated with acute myeloid leukemia (AML) progression and chemo-resistance, but its detailed functions and molecular mechanisms have not been fully delineated. Besides, serum RNA m6A demethylase fat mass and obesity-associated protein (FTO)-containing exosomes are deemed as important indicators for cancer progression, and this study aimed to investigate the role of BM-MSCs-derived FTO-exosomes in regulating the malignant phenotypes of AML cells. Here, we verified that BM-MSCs-derived exosomes delivered FTO to promote cancer aggressiveness, stem cell properties and Cytosine arabinoside (Ara-C)-chemoresistance in AML cells, and the underlying mechanisms were also uncovered. Our data suggested that BM-MSCs-derived FTO-exo demethylated m6A modifications in the m6A-modified LncRNA GLCC1 to facilitate its combination with the RNA-binding protein Hu antigen R (HuR), which further increased the stability and expression levels of LncRNA GLCC1. In addition, LncRNA GLCC1 was verified as an oncogene to facilitate cell proliferation and enhanced Ara-C-chemoresistance in AML cells. Further experiments confirmed that demethylated LncRNA GLCC1 served as scaffold to facilitate the formation of the IGF2 mRNA binding protein 1 (IGF2BP1)-c-Myc complex, which led to the activation of the downstream tumor-promoting c-Myc-associated signal pathways. Moreover, our rescuing experiments validated that the promoting effects of BM-MSCs-derived FTO-exo on cancer aggressiveness and drug resistance in AML cells were abrogated by silencing LncRNA GLCC1 and c-Myc. Thus, the present firstly investigated the functions and underlying mechanisms by which BM-MSCs-derived FTO-exo enhanced cancer aggressiveness and chemo-resistance in AML by modulating the LncRNA GLCC1-IGF2BP1-c-Myc signal pathway, and our work provided novel biomarkers for the diagnosis, treatment and therapy of AML in clinic.


Asunto(s)
Adenina/análogos & derivados , Exosomas , Leucemia Mieloide Aguda , Células Madre Mesenquimatosas , ARN Largo no Codificante , Humanos , Exosomas/metabolismo , Exosomas/patología , Resistencia a Antineoplásicos , ARN Largo no Codificante/metabolismo , Leucemia Mieloide Aguda/genética , Citarabina/farmacología , Citarabina/metabolismo , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/patología , Desmetilación , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/genética , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/metabolismo
2.
BMC Med Genomics ; 16(1): 191, 2023 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-37596597

RESUMEN

BACKGROUND: N6-methyladenosine (m6A) has been confirmed to function critically in acute myeloid leukemia (AML) progression. Hitherto, the subtyping and prognostic predictive significance of m6A-correlated genes in AML is unclear. METHOD: From The Cancer Genome Atlas (TCGA-LAML), Therapeutically Applicable Research to Generate Effective Treatments (TARGET-AML) and Gene Expression Omnibus (GEO, GSE71014) databases, we collected the sequencing data of AML patients. The batch effect was removed via limma package for TCGA-LAML and TARGET-AML, and the aggregated samples were AML cohorts. Samples in the AML cohort identified m6A models in AML by consensus clustering based on 23-m6A-related modulators. M6A-related differentially expressed genes (m6ARDEGs) influencing the overall survival (OS) of AML were determined by performing differential expression analysis and univariate COX analysis, and consensus-based clustering was utilized to access AML molecular subtypes. LASSO and multivariate COX analyses were performed to obtain the optimized m6ARDEGs to construct the m6A Prognostic Risk Score (m6APR_Score). Whether the model was robust was evaluated according to Kaplan-Meier (K-M) and receiver operator characteristic (ROC) curves. Further, the abundance of immune cell infiltration was explored in different m6A modification patterns and molecular subtypes and m6APR_Score groupings. Finally, nomogram was constructed to predict OS in AML. Quantitative real-time polymerase chain reaction (RT-qPCR) and cell counting kit-8 (CCK-8) assay were used to validate the genes in m6APR_Score in AML cells. RESULTS: The m6A models (m6AM1, m6AM2, m6AM3) and molecular subtypes (C1, C2, C3) were identified in the AML cohort, exhibiting different prognosis and immunoreactivity. We recognized novel prognostic biomarkers of AML such as CD83, NRIP1, ACSL1, METTL7B, OGT, and C4orf48. AML patients were grouped into high-m6APR_Score and low-m6APR_Score groups, with the later group showing a better prognosis than former one. Both the AML cohort and the validation cohort GSE71014 demonstrated excellent prediction. Finally, the nomogram accurately predicted the survival of patients suffering from AML. Further, the decision curves showed that both nomogram and m6APR_Score showed excellent prediction. It was confirmed in vitro experiments that mRNA expressions of NRIP1, ACSL1, METTL7B and OGT were elevated, while CD83 and C4orf48 mRNA expressions downregulated in AML cells. A significant increase in the viability of U937 and THP-1 cell lines after inhibition of CD83, while siMETTL7B had contrast results. CONCLUSION: Our study demonstrated that m6APR_Score and CD83, NRIP1, ACSL1, METTL7B, OGT, and C4orf48 potentially provided novel and promising prognostic support for AML patients.


Asunto(s)
Leucemia Mieloide Aguda , Humanos , Pronóstico , Genotipo , Leucemia Mieloide Aguda/genética , Análisis por Conglomerados , ARN Mensajero
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...