Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 311: 123988, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38324948

RESUMEN

Trivalent chromium (Cr3+) causes serious environmental pollution, degradation of the quality of edible agricultural products and human diseases. A novel phenanthro[9,10-d]imidazole-derived conjugated polymers (PIPF) was obtained from 4-(5,10-dibromo-1H-phenanthro[9,10-d]imidazol-2-yl)phenol and diethyl 4,4'-(2,7-bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-9H-fluorene-9,9-diyl)dibutyrate by Suzuki polymerization reaction, which was reasonably demonstrated by 1H NMR spectroscopy, infrared spectroscopy and quantum chemical calculations. The PIPF exhibits a "turn-on" fluorescence response to Cr3+ in DMSO/H2O (98:2, v/v) with naked-eye detection. The limit of detection for Cr3+ was calculated to be 0.073 µM with a linear range of 3-9 µM. The possible mechanism of the PIPF-based Cr3+ fluorescence "turn-on" sensor is due to the inhibition of the PET process by the coordination of Cr3+ to the hexaalkyl ester carbon chain of PIPF (RCOO-). The high sensitivity, good selectivity, and utility of this sensor indicated that PIPF-based "turn-on" fluorescence sensor is a potential fluorescence application for measuring Cr3+ in environmental samples.

2.
J Mater Chem B ; 12(7): 1816-1825, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38291968

RESUMEN

Photodynamic therapy (PDT) has shown great potential for tumor treatment as the method is noninvasive, highly selective, and causes minimal side effects. However, conventional type II PDT, which relies on 1O2, presents poor therapeutic efficacy for hypoxic tumors due to its reliance on oxygen. Here, CeO2/Ti3C2-MXene (CeO2@MXene) hybrids were successfully designed by growing CeO2in situ using Ti3C2-MXene (MXene) nanosheets. CeO2@MXene serves as a reduction-oxidation (REDOX) center due to the presence of Ce in the lattice of CeO2 nanoparticles. This REDOX center reacts with H2O2 to generate oxygen and weakens the hypoxic tumor cell environment, achieving type II PDT. At the same time, many other ROS (such as ⋅O2- and ⋅OH) can be produced via a type I photodynamic mechanism (electron transfer process). The CeO2@MXene heterojunction performs nanoenzymatic functions for synergistic type I and type II PDT, which improves cancer treatment.


Asunto(s)
Neoplasias Óseas , Nitritos , Osteosarcoma , Elementos de Transición , Humanos , Peróxido de Hidrógeno , Hipoxia , Oxígeno
3.
ACS Appl Mater Interfaces ; 15(43): 50002-50014, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37851535

RESUMEN

Two-dimensional (2D) nanomaterials as drug carriers and photosensitizers have emerged as a promising antitumor strategy. However, our understanding of 2D antitumor nanomaterials is limited to intrinsic properties or additive modification of different materials. Subtractive structural engineering of 2D nanomaterials for better antitumor efficacy is largely overlooked. Here, subtractively engineered 2D MXenes with uniformly distributed nanopores are synthesized. The nanoporous defects endowed MXene with enhanced surface plasmon resonance effect for better optical absorbance performance and strong exciton-phonon coupling for higher photothermal conversion efficiency. In addition, porous structure improves the binding ability between drug and unsaturated bonds, thus promoting drug-loading capacity and reducing uncontrolled drug release. Furthermore, the porous structure provides adhesion sites for filopodia, thereby promoting the cellular internalization of the drug. Clinically, osteosarcoma is the most common bone malignancy routinely treated with doxorubicin-based chemotherapy. There have been no significant treatment advances in the past decade. As a proof-of-concept, nanoporous MXene loaded with doxorubicin is developed for treating human osteosarcoma cells. The porous MXene platform results in a higher amount of doxorubicin-loading, faster near-infrared (NIR)-controlled doxorubicin release, higher photothermal efficacy under NIR irradiation, and increased cell adhesion and internalization. This facile method pioneers a new paradigm for enhancing 2D material functions and is attractive for tumor treatment.


Asunto(s)
Neoplasias Óseas , Nanoporos , Osteosarcoma , Humanos , Nanomedicina , Doxorrubicina/farmacología , Doxorrubicina/química , Osteosarcoma/tratamiento farmacológico , Fototerapia , Línea Celular Tumoral
4.
Artículo en Inglés | MEDLINE | ID: mdl-37782456

RESUMEN

Hyperthermophilic Sulfolobus solfataricus ß-glycosidase (SS-ßGly), with higher stability and activity than mesophilic enzymes, has potential for industrial ginsenosides biotransformation. However, its relatively low ginsenoside Rd-hydrolyzing activity limits the production of pharmaceutically active minor ginsenoside compound K (CK). In this study, first, we used molecular docking to predict the key enzyme residues that may hypothetically interact with ginsenoside Rd. Then, based on sequence alignment and alanine scanning mutagenesis approach, key variant sites were identified that might improve the enzyme catalytic efficiency. The enzyme catalytic efficiency (kcat/Km) and substrate affinity (Km) of the N264D variant enzyme for ginsenoside Rd increased by 60% and decreased by 17.9% compared with WT enzyme, respectively, which may be due to a decrease in the binding free energy (∆G) between the variant enzyme and substrate Rd. In addition, Markov state models (MSM) analysis during the whole 1000-ns MD simulations indicated that altering N264 to D made the variant enzyme achieve a more stable SS-ßGly conformational state than the wild-type (WT) enzyme and corresponding Rd complex. Under identical conditions, the relative activities and the CK conversion rates of the N264D enzyme were 1.7 and 1.9 folds higher than those of the WT enzyme. This study identified an excellent hyperthermophilic ß-glycosidase candidate for industrial biotransformation of ginsenosides.

5.
Front Pharmacol ; 13: 922204, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35924042

RESUMEN

Osmanthus fragrans (scientific name: Osmanthus fragrans (Thunb.) Lour.) is a species of the Osmanthus genus in the family Oleaceae, and it has a long history of cultivation in China. O. fragrans is edible and is well known for conferring a natural fragrance to desserts. This flowering plant has long been cultivated for ornamental purposes. Most contemporary literature related to O. fragrans focuses on its edible value and new species discovery, but the functional use of O. fragrans is often neglected. O, fragrans has many properties that are beneficial to human health, and its roots, stems, leaves, flowers and fruits have medicinal value. These characteristics are recorded in the classics of traditional Chinese medicine. Studies on the metabolites and medicinal value of O. fragrans published in recent years were used in this study to evaluate the medicinal value of O. fragrans. Using keywords such as metabolites and Osmanthus fragrans, a systematic and nonexhaustive search of articles, papers and books related to the medicinal use of Osmanthus fragrans metabolites was conducted. Fifteen metabolites were identified through this literature search and classified into three categories according to their properties and structure: flavonoids, terpenes and phenolic acids. It was found that the pharmacological activities of these secondary metabolites mainly include antioxidant, anticancer, anti-inflammatory and antibacterial activities and that these metabolites can be used to treat many human diseases, such as cancer, skin diseases, cardiovascular diseases, and neurological diseases. Most of the reports that are currently available and concern the secondary metabolites of Osmanthus fragrans have limitations. Some reports introduce only the general classification of compounds in Osmanthus fragrans, and some reports introduce only a single compound. In contrast, the introduction section of this paper includes both the category and the functional value of each compound. While reviewing the data for this study, the authors found that the specific action sites of these compounds and their mechanisms of action in plants are relatively weak, and in the future, additional research should be conducted to investigate this topic further.

6.
Inorg Chem ; 60(2): 1116-1123, 2021 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-33405915

RESUMEN

The development of porphyrin-based metal-organic frameworks (MOFs) has attracted significant interest in the scientific community in recent years because of their versatile applications particularly in optical and electronic fields. In this study, a highly selective and sensitive fluorescent turn-on sensor using a porphyrinic MOF, Tb-TCPP, is presented, which displays a 10-fold fluorescence enhancement in the presence of Al3+, Cr3+, and Fe3+ ions. The detection limit is in the nM region. For the Al3+ ion, it could be visually detected at concentrations as low as 5 mM within 15 min. Tb-TCPP could also be used as an indicator for acidic or alkaline solutions at pH values of >9 and <3. The studies on the detection mechanism illustrate that cation exchange proceed between Tb-TCPP and these M3+ ions, and consequently, energy transfer from TCPP to Tb3+ is suppressed and π*-π energy transfer of the porphyrin ligand is significantly enhanced.

7.
Org Lett ; 16(12): 3376-9, 2014 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-24895836

RESUMEN

A concise and efficient approach for the diastereoselective total synthesis of salvileucalin C, as well as their biosynthetically related diterpenoids salvileucalin D, salvipuberulin, isosalvipuberulin, and dugesin B, has been reported for the first time. The key features of the strategy are based on a Beckwith-Dowd ring expansion, a tandem diastereoselective Stille coupling/debromination/desilylation/lactonization reaction, and a photoinduced electrocyclic ring contraction.


Asunto(s)
Diterpenos/síntesis química , Diterpenos/química , Estructura Molecular , Salvia/química , Estereoisomerismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA