Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Mater Horiz ; 11(6): 1588-1596, 2024 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-38270542

RESUMEN

Biomass-based hydrogels have displayed excellent potential in flexible strain sensors due to their adequacy, biocompatibility, nontoxic and degradability. Nevertheless, their inferior mechanical properties, particularly at cryogenic temperatures, impeded their extensive utilization. Herein, we reported a rationally designed strain sensor fabricated from a gelatin and cellulose-derived hydrogel with superior mechanical robustness, cryogenic endurance, and flexibility, owing to a triple dynamic bond strategy (TDBS), namely the synergistic reinforcement among potent hydrogen bonds, imine bonds, and sodium bonds. Beyond conventional sacrificing bonds consisting of hydrogen bonds, dynamic covalent bonds and coordinate bonds, synergetic triple dynamic bonds dominated by strong hydrogen bonds and assisted by imine and sodium bonds with higher strength can dissipate more mechanical energy endowing the hydrogel with 38-fold enhancement in tensile strength (6.4 MPa) and 39-fold improvement in toughness (2.9 MPa). We further demonstrated that this hydrogel can work as a robust and biodegradable strain sensor exhibiting remarkable flexibility, broad detection range, considerable sensitivity and excellent sensing stability. Furthermore, owing to the improved nonfreezing performance achieved from incorporating sodium salts, the sensor delivered outstanding sensing properties under subzero conditions such as -20 and -4 °C. It is anticipated that the TDBS can create diverse high-performance soft-electronics for broad applications in human-machine interfaces, energy and healthcare.


Asunto(s)
Celulosa , Hidrogeles , Humanos , Biomasa , Iminas , Sodio
2.
Mater Horiz ; 9(12): 3118, 2022 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-36382582

RESUMEN

Correction for 'A self-healing, recyclable and conductive gelatin/nanofibrillated cellulose/Fe3+ hydrogel based on multi-dynamic interactions for a multifunctional strain sensor' by Haocheng Fu et al., Mater. Horiz., 2022, 9, 1412-1421, https://doi.org/10.1039/D2MH00028H.

3.
Mater Horiz ; 9(5): 1412-1421, 2022 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-35322839

RESUMEN

Conductive hydrogels have emerged as promising material candidates for multifunctional strain sensors, attributed to their similarity to biological tissues, good wearability, and high accuracy of information acquisition. However, it is difficult to simultaneously manufacture conductive hydrogel-based multifunctional strain sensors with the synergistic properties of reliable healability for long-term usage and environmental degradability/recyclability for decreasing the electronic waste. This work reports a facile strategy to engineer a self-healing, recyclable and conductive strain sensor by virtue of molecular-level multi-dynamic interactions (MMDIs) including Schiff base complexes, hydrogen bonds, and coordination bonds, which were fabricated using a dialdehyde TEMPO (2,2,6,6-tetramethylpiperidine-1-oxyl)-oxidized nanofibrillated cellulose (DATNFC) pre-reinforced gelatin nanocomposite hydrogel (gelatin/DATNFC hydrogel, GDH) followed by dipping in an Fe3+ aqueous solution. The MMDI strategy allows synchronous regulation of both bulk and interfacial interactions to obtain exciting properties that outperform those of conventional hydrogels, including extraordinary compressive stress (1310 kPa), intriguing self-healing abilities, and remarkable electrical conductivity. With these outstanding merits, the as-prepared gelatin/DATNFC/Fe3+ hydrogel (GDIH) is developed to be a multifunctional strain sensor with appealing strain sensitivity (GF = 2.24 under 6% strain) and compressive sensitivity (S = 1.14 kPa-1 under 15 kPa), which can be utilized to manufacture electronic skin and accurately discern subtle bodily motions, handwriting and personal signatures. Notably, this GDIH-based sensor also exhibited reliable self-healing properties for long-term usage, environmental degradability and complete recyclability for decreasing the electronic waste. In consideration of the extremely facile preparation process, biocompatibility, satisfactory functionalities, remarkable self-healing properties and recyclability, the emergence of the GDIH-based sensor is believed to propose a new strategy for the development of sustainable-multifunctional strain sensors and healthcare monitoring.


Asunto(s)
Hidrogeles , Dispositivos Electrónicos Vestibles , Celulosa/química , Conductividad Eléctrica , Gelatina , Hidrogeles/química
4.
Bioresour Technol ; 282: 228-235, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30870688

RESUMEN

Camellia Oleifera Shell (COS) is a kind of renewable lignocellulose resource and contains abundant hemicelluloses. In this work, the hemicelluloses in COS were extracted by alkali treatment and precipitated by ethanol with different concentration. Thermal pyrolysis kinetics of COS hemicelluloses were investigated using a thermogravimetric analyzer at the heating rates of 5, 10, and 20 °C/min based on Coats-Redfern, Flynn-Wall-Ozawa (FWO), and Kissinger-Akahira-Sunose (KAS) model. The results showed that the best fitting thermal pyrolysis mechanism of COS hemicelluloses was one-dimensional diffusion reaction analyzed by Coats-Redfern model. The activation energies of COS hemicelluloses ranged from 175.07 to 247.87 kJ·mol-1 and from 174.74 to 252.50 kJ·mol-1 calculated by FWO and KAS, respectively. The thermal stabilities of COS hemicelluloses were enhanced with the precipitated ethanol concentration increasing, and reflected by thermodynamic parameters ΔH, ΔG and ΔS. This study may provide basic theoretical supports for the thermochemical conversion of COS hemicelluloses.


Asunto(s)
Camellia/química , Polisacáridos/química , Cinética , Polisacáridos/aislamiento & purificación , Pirólisis , Termodinámica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...