Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
Más filtros













Intervalo de año de publicación
1.
Fish Physiol Biochem ; 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38789648

RESUMEN

In order to evaluate the function of hypoxia-inducible factor-1 alpha (hif1α) and factor inhibiting hif1α (fih1) in response to thermal stress, we first conducted a functional analysis of A. sapidissima hif1α and fih1, and determined hif1α and fih1 expressions in different tissues in response to thermal stress based on identified housekeeping genes (HKGs). The results showed that hif1α and fih1 were mainly located in the nucleus and cytoplasm. The full length cDNA sequence of hif1α and fih1 was 4073 bp and 2759 bp, respectively. The cDNA sequence of hif1α includes 15 exons encoding 750 amino acid residues, and the full length cDNA sequence of fih1 contains 9 exons encoding 354 amino acid residues. During the acute thermal stress transferring from 16 ± 0.5 °C (control) to 20 ± 0.5 °C, 25 ± 0.5 °C, and 30 ± 0.5 °C for 15 min, it was found that the expression trends of hif1α and fih1 showed an inhibitory regulation in the heart, while they consistently expressed in brain, intestine, muscle, gill, kidney and liver. In conclusion, this is the first study to identify the tissue-specific HKGs in A. sapidissima and found that ef1α and ß-actin are the most suitable HKGs. Hif1α and Fih1 are mainly the nuclear and cytoplasmic proteins, respectively, having high levels in the heart and brain. Alosa sapidissima countered a temperature increase from 16 to 25 ℃ by regulating the expressions of hif1α and fih1, but their physiological regulatory functions were unable to cope with acute thermal stress when the temperature difference was 14 ℃ (from 16 to 30 ℃).

2.
Sci Total Environ ; 916: 170329, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38280591

RESUMEN

High temperature is an important abiotic stressor that limits the survival and growth of aquatic organisms. American shad (Alosa sapidissima), a migratory fish suitable for culturing at low temperatures, is known for its delicious taste and thus has high economic value. Studies concerning changes in A. sapidissima under high temperature are limited, especially at the gene expression and protein levels. High-temperature stress significantly reduced the survival rates and increased vacuolar degeneration and inflammatory infiltration in the gills and liver. High temperature increased the activities of SOD, CAT, and cortisol, with a trend of initial increase followed by decreases in MDA, ALP, and LDH, and irregular changes in T-AOC and Na-K-ATPase. Comprehensive analysis of the transcriptome, proteome, and metabolome of gills from fish treated with different culture temperatures (24, 27, and 30 °C) revealed that differentially expressed genes, proteins, and metabolites were highly enriched in pathways involved in protein digestion and absorption, protein processing in endoplasmic reticulum, metabolic pathways, and purine metabolism. Gene expression and protein profiles indicated that genes coding for antioxidants (i.e., cat and alpl) and members of the heat shock protein (i.e., HSP70, HSP90AA1, and HSP5) were significantly upregulated. Additionally, a conjoint analysis revealed that several key enzymes, including nucleoside diphosphate kinase 2, adenosine deaminase, and ectonucleoside triphosphate diphosphohydrolase 5/6 were altered, thereby affecting the metabolism of guanosine, guanine, and inosine. An interaction network further confirmed that levels of the essential amino acids DL-arginine and L-histidine were significantly reduced, and corticosterone levels were significantly increased, suggesting that A. sapidissima may be more dependent on amino acids for energy in vivo. Overall, this work suggests that living in a high-temperature environment leads to differential defense responses in fishes. The results provide novel perspectives for studying the molecular basis of adaptation to climate change in A. sapidissima and for genetic selection.


Asunto(s)
Peces , Multiómica , Animales , Temperatura , Peces/fisiología , ATPasa Intercambiadora de Sodio-Potasio
3.
BMC Genomics ; 25(1): 64, 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38229016

RESUMEN

BACKGROUND: Largemouth bass (Micropterus salmoides) has significant economic value as a high-yielding fish species in China's freshwater aquaculture industry. Determining the major genes related to growth traits and identifying molecular markers associated with these traits serve as the foundation for breeding strategies involving gene pyramiding. In this study, we screened restriction-site associated DNA sequencing (RAD-seq) data to identify single nucleotide polymorphism (SNP) loci potentially associated with extreme growth differences between fast-growth and slow-growth groups in the F1 generation of a largemouth bass population. RESULTS: We subsequently identified associations between these loci and specific candidate genes related to four key growth traits (body weight, body length, body height, and body thickness) based on SNP genotyping. In total, 4,196,486 high-quality SNPs were distributed across 23 chromosomes. Using a population-specific genotype frequency threshold of 0.7, we identified 30 potential SNPs associated with growth traits. Among the 30 SNPs, SNP19140160, SNP9639603, SNP9639605, and SNP23355498 showed significant associations; three of them (SNP9639603, SNP9639605, and SNP23355498) were significantly associated with one trait, body length, in the F1 generation, and one (SNP19140160) was significantly linked with four traits (body weight, height, length, and thickness) in the F1 generation. The markers SNP19140160 and SNP23355498 were located near two growth candidate genes, fam174b and ppip5k1b, respectively, and these candidate genes were closely linked with growth, development, and feeding. The average body weight of the group with four dominant genotypes at these SNP loci in the F1 generation population (703.86 g) was 19.63% higher than that of the group without dominant genotypes at these loci (588.36 g). CONCLUSIONS: Thus, these four markers could be used to construct a population with dominant genotypes at loci related to fast growth. These findings demonstrate how markers can be used to identify genes related to fast growth, and will be useful for molecular marker-assisted selection in the breeding of high-quality largemouth bass.


Asunto(s)
Lubina , Polimorfismo de Nucleótido Simple , Animales , Lubina/genética , Frecuencia de los Genes , Genotipo , Peso Corporal/genética
5.
Front Plant Sci ; 14: 1128780, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36875610

RESUMEN

Gibberellin (GA) is an important endogenous hormone involved in plant responses to abiotic stresses. Experiments were conducted at the Research and Education Center of Agronomy, Shenyang Agricultural University (Shenyang, China) in 2021.We used a pair of near-isogenic inbred maize lines comprising, SN98A (light-sensitive inbred line) and SN98B (light-insensitive inbred line) to study the effects of exogenous gibberellin A3 (GA3) application on different light-sensitive inbred lines under weak light conditions. The concentration of GA3 was selected as 20, 40 and 60 mg L-1. After shade treatment, the photosynthetic physiological indexes of SN98A were always lower than SN98B, and the net photosynthetic rate of SN98A was 10.12% lower than SN98B on the 20th day after shade treatment. GA3 treatments significantly reduced the barren stalk ratios in SN98A and improved its seed setting rates by increasing the net photosynthetic rate (Pn), transpiration rate (Tr), stomatal conductance (Gs), photosynthetic pigment contents, photochemical efficiency of photosystem II (PS II) (Fv/Fm), photochemical quenching coefficient (qP), effective quantum yield of PSII photochemistry (ΦPSII), and antioxidant enzyme activities, where the most effective treatment was 60 mg L-1GA3. Compared with CK group, the seed setting rate increased by 33.87%. GA3 treatment also regulated the metabolism of reactive oxygen species (ROS) and reduced the superoxide anion ( O 2 - ) production rate, H2O2 content, and malondialdehyde content. The superoxide anion ( O 2 - ) production rate, H2O2 content and malondialdehyde content of SN98A sprayed with 60 mg L-1 GA3 decreased by 17.32%,10.44% and 50.33% compared with CK group, respectively. Compared with the control, GA3 treatment significantly (P < 0.05) increased the expression levels of APX and GR in SN98A, and APX, Fe-SOD, and GR in SN98B. Weak light stress decreased the expression of GA20ox2, which was related to gibberellin synthesis, and the endogenous gibberellin synthesis of SN98A. Weak light stress accelerated leaf senescence, and exogenous GA3 application inhibited the ROS levels in the leaves and maintained normal physiological functions in the leaves. These results indicate that exogenous GA3 enhances the adaptability of plants to low light stress by regulating photosynthesis, ROS metabolism and protection mechanisms, as well as the expression of key genes, which may be an economical and environmentally friendly method to solve the low light stress problem in maize production.

6.
BMC Genomics ; 24(1): 70, 2023 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-36765276

RESUMEN

BACKGROUND: MicroRNAs (miRNAs) are endogenous small non-coding RNAs (21-25 nucleotides) that act as essential components of several biological processes. Golden-back crucian carp (GBCrC, Carassius auratus) is a naturally mutant species of carp that has two distinct body skin color types (golden and greenish-grey), making it an excellent model for research on the genetic basis of pigmentation. Here, we performed small RNA (sRNA) analysis on the two different skin colors via Illumina sequencing. RESULTS: A total of 679 known miRNAs and 254 novel miRNAs were identified, of which 32 were detected as miRNAs with significant differential expression (DEMs). 23,577 genes were projected to be the targets of 32 DEMs, primarily those involved in melanogenesis, adrenergic signaling in cardiomyocytes, MAPK signaling pathway and wnt signaling pathway by functional enrichment. Furthermore, we built an interaction module of mRNAs, proteins and miRNAs based on 10 up-regulated and 13 down-regulated miRNAs in golden skin. In addition to transcriptional destabilization and translational suppression, we discovered that miRNAs and their target genes were expressed in the same trend at both the transcriptional and translational levels. Finally, we discovered that miR-196d could be indirectly implicated in regulating melanocyte synthesis and motility in the skin by targeting to myh7 (myosin-7) gene through the luciferase reporter assay, antagomir silencing in vivo and qRT-PCR techniques. CONCLUSIONS: Our study gives a systematic examination of the miRNA profiles expressed in the skin of GBCrC, assisting in the comprehension of the intricate molecular regulation of body color polymorphism and providing insights for C. auratus breeding research.


Asunto(s)
Carpas , MicroARNs , Oryza , Animales , Carpas/genética , Carpas/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Pigmentación de la Piel/genética , Oryza/genética , Fitomejoramiento , Perfilación de la Expresión Génica
7.
Artículo en Inglés | MEDLINE | ID: mdl-35691494

RESUMEN

In vertebrates, the microphthalmia-associated transcription factor (mitf) is at the hub of the melanin synthesis regulation network. However, little information is known about its molecular characterization, expression, location, or function in skin color differentiation and variation of red tilapia. The full-length cDNA sequences (1977 bp and 1999 bp) of mitfa and mitfb, encoding polypeptides of 491 and 514 amino acids, were effectively identified from red tilapia in this study. The Mitfa and Mitfb sequences of red tilapia clustered first with O. aureus, then with other teleost fish, according to phylogenetic analysis. Mitfa and mitfb mRNA were highly expressed in the brain, dorsal skin and eye tissues using quantitative real-time PCR. The mRNA expressions of mitfa and mitfb were the highest in the cleavage stage during the early development of red tilapia. Among three different colors of red tilapia, the expression levels of mitfa and mitfb were highest in the PB (pink with scattered black spots) dorsal skin. After overwintering, the mitfa and mitfb mRNA expressions were high in the dorsal skin of PB (color changed from pink to black). Mitfa and mitfb were mostly found in the epidermal layer of the dorsal skin, according to in situ hybridization (ISH) analysis. After injecting mitf-dsRNA duplicates along the tail vein of red tilapia, the activity of tyrosinase and the level of melanin in the dorsal skin both decreased significantly. The mRNA expressions of mitfa and its downstream genes (tyrb, tyrp1a and dct) decreased, whereas the mRNA expression of mitfb increased after mitfa-dsRNA injection. The mRNA expressions of mitfb, tyrb, tyrp1a and dct decreased, whereas the mRNA expression of mitfa increased after injecting mitfb-dsRNA. These findings suggest that mitf gene duplicates may play an important role in red tilapia skin color differentiation and variation via the melanogenesis pathway.


Asunto(s)
Factor de Transcripción Asociado a Microftalmía , Tilapia , Animales , Melaninas/genética , Factor de Transcripción Asociado a Microftalmía/genética , Factor de Transcripción Asociado a Microftalmía/metabolismo , Filogenia , ARN Mensajero/genética , ARN Mensajero/metabolismo , Tilapia/genética , Tilapia/metabolismo
9.
Fish Physiol Biochem ; 48(3): 669-682, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35419737

RESUMEN

The commercial value of red tilapia is hampered by variations in skin color during overwintering. In this study, three types of skin of red tilapia, including the skin remained pink color during and after overwintering (P), the skin changed from pink color to black color during overwintering and remained black color after overwintering (P-B), and the skin changed from pink color to black color during overwintering but recovered to pink color when the temperature rose after overwintering (P-B-P), were used to analyze their molecular mechanisms of color variation. The transcriptome results revealed that the P, P-B, and P-B-P libraries had 43, 42, and 43 million clean reads, respectively. The top 10 abundance mRNAs and specific mRNAs (specificity measure SPM > 0.9) were screened. After comparing intergroup gene expression levels, there were 2528, 1924, and 1939 differentially expressed genes (DEGs) between P-B-P and P-B, P-B-P and P, and P-B and P, respectively. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses of color-related mRNAs showed that a number of DEGs, including tyrp1, tyr, pmel, mitf, mc1r, asip, tat, hpdb, and foxd3, might play a potential role in pigmentation. Additionally, the co-expression patterns of genes were detected within the pigment-related pathways by the PPI network from P-B vs. P group. Furthermore, DEGs from the apoptosis and autophagy pathways, such as baxα, beclin1, and atg7, might be involved in the fading of red tilapia melanocytes. The findings will aid in understanding the molecular mechanism underlying skin color variation in red tilapia during and after overwintering as well as lay a foundation for future research aimed at improving red tilapia skin color characteristics.


Asunto(s)
Pigmentación de la Piel , Tilapia , Animales , Perfilación de la Expresión Génica/veterinaria , ARN Mensajero/genética , Pigmentación de la Piel/genética , Tilapia/genética , Transcriptoma
10.
J Appl Microbiol ; 132(2): 1357-1369, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34369031

RESUMEN

AIMS: To investigate the phylogenetic composition and functional potential of bighead carp (Hypophthalmichthys nobilis) gut microbiome in two rearing patterns (bighead carp polycultured with Oreochromis niloticus in pond A and bighead carp polycultured with Cyprinus carpio in pond B, respectively), as well as the changes of plankton in the cultured water at four different time points. METHODS AND RESULTS: The intestinal contents were sequenced using Illumina HiSeq of bacterial 16S rRNA. Cyanophyta and Chlorophyta were the prevalent phytoplankton in the water, whereas Rotifers and Protozoa were the predominant zooplankton. In all, 779,563 quality-filtered sequences and 8870 amplicon sequence variants were obtained from 24 samples that numbered T1A1 to T4A3 and T1B1 to T4B3, resulting in 35 phyla, with Proteobacteria, Firmicutes, Fusobacteria and Cyanobacteria dominating. According to alpha diversity and beta diversity measurements, the bacterial communities were diverse, Chao1 richness and Pielou's evenness were significantly lower in the T2B and T4B groups. The gut bacterial communities of T1A, T1B, T2A and T2B groups differed from those of other samples, which formed distinctly clusters with principal coordinate analysis and non-metric multidimensional scaling analysis. PICRUSt2 predictive function analysis revealed that different culture patterns influenced the gut microbiota metabolic capacity. CONCLUSIONS: Intestinal bacteria belonging to the phyla Proteobacteria, Firmicutes, Cyanobacteria and Fusobacteria are better suited to inhabit in various environments and perform specific functions. Furthermore, contact with the external environment and nutrient intake also stimulate the variety of intestinal microbiotas in polycultured bighead carp. SIGNIFICANCE AND IMPACT OF THE STUDY: This is the first comprehensive, high-throughput investigation of gut microbiota diversity in bighead carp during various seasons in two polycultured patterns and provide preliminary information on gut microbiome composition and changes, laying a crucial foundation for future research on fish culture patterns in various environments.


Asunto(s)
Carpas , Cianobacterias , Microbioma Gastrointestinal , Animales , Microbioma Gastrointestinal/genética , Filogenia , ARN Ribosómico 16S/genética
11.
Front Microbiol ; 12: 665201, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34194408

RESUMEN

Hepatocellular carcinoma (HCC) is the sixth most common cancer worldwide and the fourth leading cause of cancer-related death. The most common risk factor for developing HCC is chronic infection with hepatitis B virus (HBV). Early stages of HBV-related HCC (HBV-HCC) are generally asymptomatic. Moreover, while serum alpha-fetoprotein (AFP) and abdominal ultrasound are widely used to screen for HCC, they have poor sensitivity. Thus, HBV-HCC is frequently diagnosed at an advanced stage, in which there are limited treatment options and high mortality rates. Serum biomarkers with high sensitivity and specificity are crucial for earlier diagnosis of HCC and improving survival rates. As viral-host interactions are key determinants of pathogenesis, viral biomarkers may add greater diagnostic power for HCC than host biomarkers alone. In this review, we summarize recent research on using virus-derived biomarkers for predicting HCC occurrence and recurrence; including circulating viral DNA, RNA transcripts, and viral proteins. Combining these viral biomarkers with AFP and abdominal ultrasound could improve sensitivity and specificity of early diagnosis, increasing the survival of patients with HBV-HCC. In the future, as the mechanisms that drive HBV-HCC to become clearer, new biomarkers may be identified which can further improve early diagnosis of HBV-HCC.

12.
Front Genet ; 12: 821403, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35126475

RESUMEN

The early development of fish is regulated through dynamic and complex mechanisms involving the regulation of various genes. Many genes are subjected to post-transcriptional regulation by microRNAs (miRNAs). In the Chinese aquaculture industry, the native species bighead carp (Hypophthalmichthys nobilis) is important. However, the genetic regulation related to the early development of bighead carp is unknown. Here, we generated developmental profiles by miRNA sequencing to study the dynamic regulation of miRNAs during bighead carp early development. This study identified 1 046 miRNAs, comprising 312 known miRNAs and 734 uncharacterized miRNAs. Changes in miRNA expression were identified in the six early development stages. An obviously increased expression trend was detected during the development process, with the main burst of activity occurring after the earliest stage (early blastula, DS1). Investigations revealed that several miRNAs were dominantly expressed during the development process, especially in the later stages (e.g., miR-10b-5p, miR-21, miR-92a-3p, miR-206-3p, and miR-430a-3p), suggesting that these miRNAs exerted important functions during embryonic development. The differentially expressed miRNAs (DEMs) and time-serial analysis (profiles) of DEMs were analyzed. A total of 372 miRNAs were identified as DEMs (fold-change >2, and false discovery rate <0.05), and three expression profiles of the DEMs were detected to have co-expression patterns (r > 0.7, and p < 0.05). The broad negative regulation of target genes by miRNAs was speculated, and many development-related biological processes and pathways were enriched for the targets of the DEMs, which might be associated with maternal genome degradation and embryogenesis processes. In conclusion, we revealed the repertoire of miRNAs that are active during early development of bighead carp. These findings will increase our understanding of the regulatory mechanisms of early development of fish.

13.
Genomics ; 113(1 Pt 1): 20-28, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33271329

RESUMEN

Cyprinus carpio is considered an alternative vertebrate fish model to zebrafish. However, systemic times-series research on the lncRNAs and mRNAs during early development of C. carpio has not been reported yet. This study provides the first long non-coding RNA (lncRNA)-mRNA expression profiles during six main early development stages (2 h post-fertilization hpf, 6 hpf, 12 hpf, 20 hpf, 64 hpf and 1 day post-hatching). A total of 51,979 lncRNAs were identified. We screened the top 10 abundance lncRNAs and mRNAs and stage-specific lncRNAs and mRNAs (specificity measure SPM > 0.9). We identified significant differentially expressed lncRNAs and mRNAs (|log2 (fold change)| ≥ 1 and false discovery rate FDR of <0.05). Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis identified numerous signaling pathways. Additionally, the lncRNA-mRNA co-regulated network analysis of two lncRNAs (lncrps25 and malat1) and two mRNAs (mitf and troponin T) were investigated. Our results provide new insight into the role of lncRNAs and mRNAs, and would advance the understanding of lncRNA-mediated mechanisms in early development of fish.


Asunto(s)
Carpas/genética , Regulación del Desarrollo de la Expresión Génica , ARN Largo no Codificante/genética , ARN Mensajero/genética , Animales , Carpas/embriología , Carpas/metabolismo , Redes Reguladoras de Genes , ARN Largo no Codificante/metabolismo , ARN Mensajero/metabolismo
14.
Artículo en Inglés | MEDLINE | ID: mdl-33186873

RESUMEN

MicroRNAs (miRNAs) play important roles in biological processes by regulating specific gene expression. Limited miRNAs information is available on embryonic development in common carp (Cyprinus carpio) so far. In this study, six important embryonic development stages of C.carpio were collected to perform a times-series of small RNA-seq experiments from cleavage, blastocyst, gastrulation, organ formation, hatching stage to 1 day post-hatching larva. The expression profiles of miRNAs were identified and differentially expressed miRNAs (DEMs) were screened out based on pairwise comparison. A mean of 12,744,989 raw reads and 9,888,123 clean reads were obtained from each library. A total of 2565 miRNAs were identified. 68 of 204 DEMs were overlapped with stage-specific miRNAs, in which 15 were known miRNAs and seemed to play a key role in embryogenesis. Additionally, time-course expression reveals several intriguing fluctuations during embryogenesis. Numerous signaling pathways were identified in embryonic development, including the phototransduction, hippo signaling pathway, Wnt, melanogenesis, histidine metabolism and fatty acid biosynthesis. The results would provide new insight into the roles of miRNAs in embryonic development, and would help us to advance the understanding of miRNA-mediated mechanisms in embryonic development of fish.


Asunto(s)
Carpas/embriología , Carpas/genética , MicroARNs/genética , Animales , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Transcriptoma
15.
Front Genet ; 11: 47, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32117457

RESUMEN

MicroRNAs (miRNAs) are ∼22 nucleotide non-coding RNA molecules that act as crucial roles in plenty of biological processes. However, the molecular and cellular mechanisms of miRNAs to regulate skin color differentiation and pigmentation in fish have not been fully understood. Herein, we revealed that miR-206, a skin-enriched miRNA, regulates melanocortin 1 receptor (Mc1r, a key regulator of melanogenesis) expression by binding to its 3'-untranslated (UTR) region through bioinformatics and luciferase reporter assay in koi carp (Cyprinus carpio L.). The analysis of spatial and temporal expression patterns suggested that miR-206 is a potential regulator in the skin pigmentation process. Then, we silenced it in vivo with an antagomir method. The result showed a substantial increase of Mc1r mRNA expression and protein level, and also its downstream genes: tyrosinase (Tyr) and dopachrome tautomerase (Dct) that encoding key enzymes involved in melanin synthesis. Moreover, we constructed the miRNA-206 sponge lentivirus vector to transfect koi carp melanocytes in vitro, further checked the functions of melanocytes using Cck-8 and Transwell assays. As a result, inhibition of miR-206 significantly up-regulated Mc1r mRNA expression and protein level and accelerated the melanocyte proliferation and migration ability compared with the scrambled-sequence negative control group (miR-NC). Overall, these findings provide the evidence that miR-206 plays a regulatory role in the skin color pigmentation through targeting the Mc1r gene and would facilitate understanding the molecular regulatory mechanisms underlying miRNA-mediated skin color pigmentation in koi carp.

16.
Braz. j. infect. dis ; 24(1): 81-84, Feb. 2020. graf
Artículo en Inglés | LILACS | ID: biblio-1089333

RESUMEN

ABSTRACT China's compulsory annual livestock anthrax vaccination policy has remarkably reduced but not completely eradicated human anthrax infections. Herein we describe a sporadic human cutaneous anthrax outbreak involving two cases in 2018 in Shaanxi Province, both involving herdsman who dealt with unvaccinated and potentially sick cattle. Both patients showed Bacillus anthracis-positive blister smear and blood culture. Treatment with penicillin was followed by uneventful recovery for both. The prompt performance of the prophylactic measures successfully interrupted the further transmission of this sporadic human cutaneous anthrax outbreak.


Asunto(s)
Humanos , Masculino , Adulto , Enfermedades Cutáneas Bacterianas/patología , Carbunco/patología , Penicilinas/uso terapéutico , Bacillus anthracis/aislamiento & purificación , China/epidemiología , Brotes de Enfermedades , Resultado del Tratamiento , Enfermedades Cutáneas Bacterianas/tratamiento farmacológico , Enfermedades Cutáneas Bacterianas/epidemiología , Carbunco/tratamiento farmacológico , Carbunco/epidemiología , Antibacterianos/uso terapéutico
17.
Braz J Infect Dis ; 24(1): 81-84, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31926898

RESUMEN

China's compulsory annual livestock anthrax vaccination policy has remarkably reduced but not completely eradicated human anthrax infections. Herein we describe a sporadic human cutaneous anthrax outbreak involving two cases in 2018 in Shaanxi Province, both involving herdsman who dealt with unvaccinated and potentially sick cattle. Both patients showed Bacillus anthracis-positive blister smear and blood culture. Treatment with penicillin was followed by uneventful recovery for both. The prompt performance of the prophylactic measures successfully interrupted the further transmission of this sporadic human cutaneous anthrax outbreak.


Asunto(s)
Carbunco/patología , Enfermedades Cutáneas Bacterianas/patología , Adulto , Carbunco/tratamiento farmacológico , Carbunco/epidemiología , Antibacterianos/uso terapéutico , Bacillus anthracis/aislamiento & purificación , China/epidemiología , Brotes de Enfermedades , Humanos , Masculino , Penicilinas/uso terapéutico , Enfermedades Cutáneas Bacterianas/tratamiento farmacológico , Enfermedades Cutáneas Bacterianas/epidemiología , Resultado del Tratamiento
18.
Int J Syst Evol Microbiol ; 70(3): 1800-1804, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31951192

RESUMEN

A novel Streptomyces strain (SSL-25T) was isolated from mangrove soil sampled at QinzhouBay, PR China. The isolate was observed to be Gram-stain-positive and to form greyish-white aerial mycelia that differentiated into straight spore chains with smooth-surfaced spores on International Streptomyces Project 2 medium. The cell-wall peptidoglycan was determined to contain ll-diaminopimelicacid. The cell-wall sugars were glucose and mannose. The predominant menaquinones were MK-9 (H6), MK-9 (H8) and MK-9 (H4). The major polar lipids contained diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylinositol, phosphatidylinositol mannoside and several unidentified phospholipids. The predominant cellular fatty acids were C16:0, iso-C16:0 and summed feature 3 (C16:1ω7c/C16:1ω6c). The genome size of strain SSL-25T was 8.1 Mbp with a G+C content of 71.5 mol%. Phylogenetic analysis indicated that strain SSL-25T is closely related to Streptomyces tsukubensis NRRL 18488T (99.4 % sequence similarity). However, the digital DNA-DNA hybridization (39.8 %) and average nucleotide identity (91.3 %) values between them showed that it represents a distinct species. Furthermore, the results of morphological, physiological and biochemical tests allowed further phenotypic differentiation of strain SSL-25T from S. tsukubensis NRRL 18488T. Therefore, based on these results, it is concluded that strain SSL-25T represents a novel Streptomyces species, for which the name Streptomyces qinzhouensis sp. nov. is proposed. The type strain is SSL-25T (=CICC 11054T=JCM33585T).


Asunto(s)
Filogenia , Microbiología del Suelo , Streptomyces/clasificación , Técnicas de Tipificación Bacteriana , Pared Celular/química , China , ADN Bacteriano/genética , Ácido Diaminopimélico/química , Ácidos Grasos/química , Tamaño del Genoma , Hibridación de Ácido Nucleico , Peptidoglicano/química , Fosfolípidos/química , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Suelo , Streptomyces/aislamiento & purificación , Vitamina K 2/análogos & derivados , Vitamina K 2/química
19.
BMC Genomics ; 20(1): 781, 2019 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-31660854

RESUMEN

BACKGROUND: Early development is a key process of the life history of fish. However, the relationship between the transcriptome and the dynamic regulation of early development is still uncharacterized in the bighead carp (Hypophthalmichthys nobilis). In the present study, we performed transcriptome analysis of six development stages in H. nobilis, aiming to understand the dynamic molecular regulation of early development in this fish. RESULTS: A total of 76,573 unigenes were assembled from clean sequence reads, with an average length of 1768 base. Among which, 41,742 (54.54%) unigenes were annotated to public protein databases, and an additional 59,014 simple sequence repeat (SSR) loci were identified among the unigenes. Furthermore, 30,199 differentially expressed transcripts (DETs) (fold change > 4 or < 0.25, and the false discovery rate FDR < 0.01) were observed in comparisons between the adjacent developmental stages, and nine expression patterns (profiles) were simulated using series-cluster analysis across six developmental stages. The unigenes expression level markedly increased after the DS1 stage (early blastula), and the numbers of DETs gradually decreased during subsequent development. The largest transcriptomic change (up- or down-regulated) was detected during the period from DS1 to DS2 (6-somite stage), which was enriched for many biological processes and metabolic pathways related to maternal to zygotic transition (MZT). Distinctly protein-protein interaction (PPI) networks were plotted for DETs during the period from DS1 to DS2. The genes (or proteins) from the same pathways were integrated together, and showed with obvious co-regulation patterns. In the series-cluster analysis, a remarkable profile of gene expression (profile_48) was identified that is probably related to the hatching during H. nobilis development, and the strict co-expression of a hatching enzyme gene (hce1) with 33 other annotated genes was identified from this profile. CONCLUSIONS: The results indicated that strict dynamic regulation occurs during the early development in H. nobilis, especially in embryogenesis before hatching. This study provides valuable new information and transcriptomic resources related to H. nobilis early development, and for certain events such as MZT and hatching.


Asunto(s)
Cyprinidae/crecimiento & desarrollo , Cyprinidae/genética , Perfilación de la Expresión Génica , Análisis de Secuencia de ARN , Animales , Análisis por Conglomerados , Cyprinidae/metabolismo , Repeticiones de Microsatélite/genética , Anotación de Secuencia Molecular , Mapeo de Interacción de Proteínas
20.
Artículo en Inglés | MEDLINE | ID: mdl-31310814

RESUMEN

Red tilapia has become more popular for aquaculture production in China in recent years. However, the pigmentation differentiation that has resulted from the process of genetic breeding and skin color variation during the overwintering period are the main problems limiting the development of commercial culture. The genetic basis of skin color differentiation is still not understood. Solute carrier family 7 member 11 (slc7a11) has been identified to be a critical genetic regulator of pheomelanin synthesis in the skin of mammals. However, little information is available about its molecular characteristics, expression, location and function in skin color differentiation of fish. In this study, three complete cDNA sequences (2159 bp, 2190 bp and 2249 bp) of slc7a11 were successfully isolated from Malaysian red tilapia, encoding polypeptides of 492, 525 and 492 amino acids respectively. Quantitative real-time PCR demonstrated that slc7a11 mRNA expression is high in the ventral skin of PR (pink with scattered red spots) fish. Immunofluorescence analysis revealed that xCT (the protein encoded by slc7a11) was concentrated mainly in the cytoplasm and nucleus of both the dorsal and ventral skin cells of fish. After RNA interference of slc7a11, slc7a11 and cbs mRNA expressions decreased, but the tyr mRNA expression increased in the skin of fish. Results suggest that slc7a11 plays an important role in skin color formation and differentiation of red tilapia through the melanogenesis pathway.


Asunto(s)
Sistema de Transporte de Aminoácidos y+/genética , Proteínas de Peces/genética , Pigmentación de la Piel/genética , Tilapia/genética , Secuencia de Aminoácidos , Sistema de Transporte de Aminoácidos y+/química , Sistema de Transporte de Aminoácidos y+/metabolismo , Animales , Secuencia de Bases , ADN Complementario/genética , Regulación de la Expresión Génica , Filogenia , Transporte de Proteínas , Interferencia de ARN , ARN Mensajero/genética , ARN Mensajero/metabolismo , Análisis de Secuencia de ADN , Piel/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA