Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Lab Invest ; 103(1): 100028, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36748190

RESUMEN

Protectin conjugates in tissue regeneration 1 (PCTR1) is a novel anti-inflammatory and proresolving lipid mediator biosynthesized from docosahexaenoic acid. Excessive activation of NLR family pyrin domain containing 3 (NLRP3) inflammasome and consequent pyroptosis are involved in diverse inflammatory diseases. However, how PCTR1 affects NLRP3 inflammasome activation and pyroptosis are still unclear. Here, we demonstrated that PCTR1 inhibited NLRP3 inflammasome activation and pyroptosis. These results show that PCTR1 dose-dependently inhibited gasdermin D cleavage in lipopolysaccharide (LPS)-primed murine primary macrophages upon nigericin stimulation. Additionally, PCTR1 treatment after LPS priming inhibited caspase-1 activation and subsequent mature interleukin-1ß release independent of the nuclear factor-kappa B pathway. PCTR1 exerted its inhibitory effects by blocking NLRP3-apoptosis-associated speck-like protein containing a CARD (ASC) interaction and ASC oligomerization, thereby restricting NLRP3 inflammasome assembly. However, the inhibitory effect of PCTR1 could be reversed by KH7 and H89, which are the inhibitors of the cyclic adenosine monophosphate (cAMP)-protein kinase A (PKA) signaling pathway. Moreover, PCTR1 treatment alleviated lung tissue damage and improved mouse survival in LPS-induced sepsis. Our study unveils the molecular mechanism of negative regulation of NLRP3 inflammasome activation and pyroptosis by a novel lipid mediator and suggests that PCTR1 may serve as a potential treatment option for NLRP3-inflammasome driven diseases.


Asunto(s)
Inflamasomas , Sepsis , Ratones , Animales , Inflamasomas/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Piroptosis , Antígenos CD59/metabolismo , Antígenos CD59/farmacología , Lipopolisacáridos/farmacología , Macrófagos/metabolismo , Sepsis/tratamiento farmacológico , Sepsis/metabolismo , Interleucina-1beta/metabolismo , Caspasa 1/metabolismo
2.
Respir Res ; 22(1): 193, 2021 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-34217286

RESUMEN

BACKGROUND: Endothelial glycocalyx loss is integral to increased pulmonary vascular permeability in sepsis-related acute lung injury. Protectin conjugates in tissue regeneration 1 (PCTR1) is a novel macrophage-derived lipid mediator exhibiting potential anti-inflammatory and pro-resolving benefits. METHODS: PCTR1 was administrated intraperitoneally with 100 ng/mouse after lipopolysaccharide (LPS) challenged. Survival rate and lung function were used to evaluate the protective effects of PCTR1. Lung inflammation response was observed by morphology and inflammatory cytokines level. Endothelial glycocalyx and its related key enzymes were measured by immunofluorescence, ELISA, and Western blot. Afterward, related-pathways inhibitors were used to identify the mechanism of endothelial glycocalyx response to PCTR1 in mice and human umbilical vein endothelial cells (HUVECs) after LPS administration. RESULTS: In vivo, we show that PCTR1 protects mice against lipopolysaccharide (LPS)-induced sepsis, as shown by enhanced the survival and pulmonary function, decreased the inflammatory response in lungs and peripheral levels of inflammatory cytokines such as tumor necrosis factor-α, interleukin-6, and interleukin-1ß. Moreover, PCTR1 restored lung vascular glycocalyx and reduced serum heparin sulphate (HS), syndecan-1 (SDC-1), and hyaluronic acid (HA) levels. Furthermore, we found that PCTR1 downregulated heparanase (HPA) expression to inhibit glycocalyx degradation and upregulated exostosin-1 (EXT-1) protein expression to promote glycocalyx reconstitution. Besides, we observed that BAY11-7082 blocked glycocalyx loss induced by LPS in vivo and in vitro, and BOC-2 (ALX antagonist) or EX527 (SIRT1 inhibitor) abolished the restoration of HS in response to PCTR1. CONCLUSION: PCTR1 protects endothelial glycocalyx via ALX receptor by regulating SIRT1/NF-κB pathway, suggesting PCTR1 may be a significant therapeutic target for sepsis-related acute lung injury.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Antiinflamatorios/farmacología , Glicocálix/metabolismo , FN-kappa B/metabolismo , Mucosa Respiratoria/metabolismo , Sirtuina 1/metabolismo , Proteínas Adaptadoras Transductoras de Señales/antagonistas & inhibidores , Animales , Ácidos Docosahexaenoicos/farmacología , Glicocálix/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Lipopolisacáridos/toxicidad , Masculino , Ratones , FN-kappa B/antagonistas & inhibidores , Mucosa Respiratoria/efectos de los fármacos , Sirtuina 1/antagonistas & inhibidores
3.
FASEB J ; 34(9): 11944-11956, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32667092

RESUMEN

Maresin1 is a potent lipid mediator exhibiting potential anti-inflammatory activity in a variety of inflammatory diseases, however, the underlying mechanisms remain poorly understood. Excessive activation of NLRP3 inflammasome has been established in multiple inflammatory diseases. Here, we show that Maresin1 dose-dependently inhibited the NLRP3 inflammasome activation and subsequent caspase-1 activation and IL-1ß secretion. This inhibitory effect could be reversed by KH7 and H89, the inhibitors of the cAMP-PKA signaling pathway. Activation of PKA kinase induced by Maresin1 led to the K63-linked ubiquitination of NLRP3 in macrophages. Maresin1 attenuated serum IL-1ß secretion through inhibition of NLRP3 inflammasome in vivo using Nlrp3-deficient mouse models of lipopolysaccharide (LPS)-induced sepsis. Maresin1 also repressed MSU-induced peritonitis. This study suggests that Maresin1 is an inhibitor of NLRP3 inflammasome activation and can be used clinically in the treatment of NLRP3 inflammasome-driven inflammatory diseases.


Asunto(s)
Ácidos Docosahexaenoicos/farmacología , Inflamasomas/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Ubiquitinación/efectos de los fármacos , Animales , Activación Enzimática/genética , Inflamasomas/genética , Lipopolisacáridos/toxicidad , Masculino , Ratones , Ratones Noqueados , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Complejo de la Endopetidasa Proteasomal/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Sepsis/inducido químicamente , Sepsis/tratamiento farmacológico , Sepsis/genética , Sepsis/metabolismo , Ubiquitinación/genética
4.
Science ; 358(6362): 528-531, 2017 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-29074776

RESUMEN

The multifunctional autoprocessing repeats-in-toxin (MARTX) toxins are a family of large toxins that are extensively distributed in bacterial pathogens. MARTX toxins are autocatalytically cleaved to multiple effector domains, which are released into host cells to modulate the host signaling pathways. The Rho guanosine triphosphatase (GTPase) inactivation domain (RID), a conserved effector domain of MARTX toxins, is implicated in cell rounding by disrupting the host actin cytoskeleton. We found that the RID is an Nε-fatty acyltransferase that covalently modifies the lysine residues in the C-terminal polybasic region of Rho GTPases. The resulting fatty acylation inhibited Rho GTPases and disrupted Rho GTPase-mediated signaling in the host. Thus, RID can mediate the lysine Nε-fatty acylation of mammalian proteins and represents a family of toxins that harbor N-fatty acyltransferase activities in bacterial pathogens.


Asunto(s)
Acetiltransferasas/metabolismo , Toxinas Bacterianas/metabolismo , Proteínas de Unión al GTP rho/metabolismo , Acetiltransferasas/química , Acilación , Toxinas Bacterianas/química , Toxinas Bacterianas/genética , Cristalografía por Rayos X , Células HEK293 , Humanos , Dominios Proteicos , Vibrio vulnificus/metabolismo
5.
Nat Struct Mol Biol ; 23(9): 868-70, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27455460

RESUMEN

Bacteriophages express proteins that inactivate the CRISPR-Cas bacterial immune system. Here we report the crystal structure of the anti-CRISPR protein AcrF3 in complex with Pseudomonas aeruginosa Cas3 (PaCas3). AcrF3 forms a homodimer that locks PaCas3 in an ADP-bound form, blocks the entrance of the DNA-binding tunnel in the helicase domain, and masks the linker region and C-terminal domain of PaCas3, thereby preventing recruitment by Cascade and inhibiting the type I-F CRISPR-Cas system.


Asunto(s)
Proteínas Bacterianas/química , Bacteriófagos/fisiología , Proteínas Asociadas a CRISPR/química , Pseudomonas aeruginosa/virología , Proteínas Virales/química , Dominio Catalítico , Cristalografía por Rayos X , Enlace de Hidrógeno , Interacciones Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Conformación Proteica en Hélice alfa , Dominios y Motivos de Interacción de Proteínas , Estructura Cuaternaria de Proteína
6.
J Biol Chem ; 290(4): 2455-65, 2015 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-25480784

RESUMEN

Leucine-rich repeat G-protein-coupled receptors (LGRs) are a unique class of G-protein-coupled receptors characterized by a large extracellular domain to recognize ligands and regulate many important developmental processes. Among the three groups of LGRs, group B members (LGR4-6) recognize R-spondin family proteins (Rspo1-4) to stimulate Wnt signaling. In this study, we successfully utilized the "hybrid leucine-rich repeat technique," which fused LGR4 with the hagfish VLR protein, to obtain two recombinant human LGR4 proteins, LGR415 and LGR49. We determined the crystal structures of ligand-free LGR415 and the LGR49-Rspo1 complex. LGR4 exhibits a twisted horseshoe-like structure. Rspo1 adopts a flat and ß-fold architecture and is bound in the concave surface of LGR4 in the complex through electrostatic and hydrophobic interactions. All the Rspo1-binding residues are conserved in LGR4-6, suggesting that LGR4-6 bind R-spondins through an identical surface. Structural analysis of our LGR4-Rspo1 complex with the previously determined LGR4 and LGR5 structures revealed that the concave surface of LGR4 is the sole binding site for R-spondins, suggesting a one-site binding model of LGR4-6 in ligand recognition. The molecular mechanism of LGR4-6 is distinct from the two-step mechanism of group A receptors LGR1-3 and the multiple-interface binding model of group C receptors LGR7-8, suggesting LGRs utilize the divergent mechanisms for ligand recognition. Our structures, together with previous reports, provide a comprehensive understanding of the ligand recognition by LGRs.


Asunto(s)
Receptores Acoplados a Proteínas G/química , Trombospondinas/química , Secuencia de Aminoácidos , Sitios de Unión , Cristalografía por Rayos X , Diseño de Fármacos , Regulación del Desarrollo de la Expresión Génica , Humanos , Leucina/química , Ligandos , Datos de Secuencia Molecular , Mutagénesis , Plásmidos , Unión Proteica , Multimerización de Proteína , Estructura Terciaria de Proteína , Proteínas Recombinantes/química , Homología de Secuencia de Aminoácido , Células Madre/citología , Proteínas Wnt/metabolismo
7.
PLoS Pathog ; 9(4): e1003322, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23633953

RESUMEN

Ubc13 is an important ubiquitin-conjugating (E2) enzyme in the NF-κB signaling pathway. The Shigella effector OspI targets Ubc13 and deamidates Gln100 of Ubc13 to a glutamic acid residue, leading to the inhibition of host inflammatory responses. Here we report the crystal structure of the OspI-Ubc13 complex at 2.3 Å resolution. The structure reveals that OspI uses two differently charged regions to extensively interact with the α1 helix, L1 loop and L2 loop of Ubc13. The Gln100 residue is bound within the hydrophilic catalytic pocket of OspI. A comparison between Ubc13-bound and wild-type free OspI structures revealed that Ubc13 binding induces notable structural reassembly of the catalytic pocket, suggesting that substrate binding might be involved in the catalysis of OspI. The OspI-binding sites in Ubc13 largely overlap with the binding residues for host ubiquitin E3 ligases and a deubiquitinating enzyme, which suggests that the bacterial effector and host proteins exploit the same surface on Ubc13 for specific recognition. Biochemical results indicate that both of the differently charged regions in OspI are important for the interaction with Ubc13, and the specificity determinants in Ubc13 for OspI recognition reside in the distinct residues in the α1 helix and L2 region. Our study reveals the molecular basis of Ubc13 deamidation by OspI, as well as a convergence of E2 recognition by bacterial and host proteins.


Asunto(s)
Amidohidrolasas/química , Amidohidrolasas/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Shigella flexneri/metabolismo , Enzimas Ubiquitina-Conjugadoras/química , Enzimas Ubiquitina-Conjugadoras/metabolismo , Secuencia de Aminoácidos , Sistemas de Secreción Bacterianos , Sitios de Unión/genética , Cristalografía por Rayos X , Células HEK293 , Humanos , Inflamación/inmunología , Inflamación/microbiología , Complejos Multiproteicos/química , Complejos Multiproteicos/metabolismo , FN-kappa B/metabolismo , Unión Proteica/genética , Alineación de Secuencia , Shigella flexneri/inmunología , Factor 6 Asociado a Receptor de TNF/metabolismo , Ubiquitinación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...