Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
ACS Biomater Sci Eng ; 2024 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-38736179

RESUMEN

Disruption of the symbiosis of extra/intratumoral metabolism is a good strategy for treating tumors that shuttle resources from the tumor microenvironment. Here, we report a precision treatment strategy for enhancing pyruvic acid and intratumoral acidosis to destroy tumoral metabolic symbiosis to eliminate tumors; this approach is based on PEGylated gold and lactate oxidase-modified aminated dendritic mesoporous silica with lonidamine and ferrous sulfide loading (PEG-Au@DMSNs/FeS/LND@LOX). In the tumor microenvironment, LOX oxidizes lactic acid to produce pyruvate, which represses tumor cell proliferation by inhibiting histone gene expression and induces ferroptosis by partial histone monoubiquitination. In acidic tumor conditions, the nanoparticles release H2S gas and Fe2+ ions, which can inhibit catalase activity to promote the Fenton reaction of Fe2+, resulting in massive ·OH production and ferroptosis via Fe3+. More interestingly, the combination of H2S and LND (a monocarboxylic acid transporter inhibitor) can cause intracellular acidosis by lactate, and protons overaccumulate in cells. Multiple intracellular acidosis is caused by lactate-pyruvate axis disorders. Moreover, H2S provides motive power to intensify the shuttling of nanoparticles in the tumor region. The findings confirm that this nanomedicine system can enable precise antitumor effects by disrupting extra/intratumoral metabolic symbiosis and inducing ferroptosis and represents a promising active drug delivery system candidate for tumor treatment.

2.
Front Pharmacol ; 15: 1320040, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38333010

RESUMEN

Background and aims: Obesity is one of the most prevalent diseases worldwide with less ideal approved agents in clinic. Activating the HSF1/PGC-1α axis in adipose tissues has been reported to induce thermogenesis in mice, which presents a promising therapeutic avenue for obesity treatment. The present study aimed to identified novel natural HSF1 activator and evaluated the therapeutic effects of the newly discovered compound on obesity-associated metabolic disorders and the molecular mechanisms of these effects. Methods: Our previous reported HSF1/PGC-1α activator screening system was used to identify novel natural HSF1 activator. The PGC-1α luciferase activity, immunoblot, protein nuclear-translocation, immunofluorescence, chromatin immunoprecipitation assays were used to evaluate the activity of compound HN-001 in activating HSF1. The experiments of mitochondrial number measurement, TG assay and imaging, cellular metabolic assay, gene assays, and CRISPR/Cas 9 were applied for investigating the metabolic effect of HN-001 in C3H10-T1/2 adipocytes. The in vivo anti-obesity efficacies and beneficial metabolic effects of HN-001 were evaluated by performing body and fat mass quantification, plasma chemical analysis, GTT, ITT, cold tolerance test, thermogenesis analysis. Results: HN-001 dose- and time-dependently activated HSF1 and induced HSF1 nuclear translocation, resulting in an enhancement in binding with the gene Pgc-1α. This improvement induced activation of adipose thermogenesis and enhancement of mitochondrial oxidation capacity, thus inhibiting adipocyte maturation. Deletion of HSF1 in adipocytes impaired mitochondrial oxidation and abolished the above beneficial metabolic effects of HN-001, including adipocyte browning induction, improvements in mitogenesis and oxidation capacity, and lipid-lowering ability. In mice, HN-001 treatment efficiently alleviated diet-induced obesity and metabolic disorders. These changes were associated with increased body temperature in mice and activation of the HSF1/PGC-1α axis in adipose tissues. UCP1 expression and mitochondrial biogenesis were increased in both white and brown adipose tissues of HN-001-treated mice. Conclusion: These data indicate that HN-001 may have therapeutic potential for obesity-related metabolic diseases by increasing the capacity of energy expenditure in adipose tissues through a mechanism involving the HSF1/PGC-1α axis, which shed new light on the development of novel anti-obesity agents derived from marine sources.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA