Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros












Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
Foods ; 13(9)2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38731687

RESUMEN

Consumers are increasing their daily demand for beef and are becoming more discerning about its nutritional quality and flavor. The present objective was to evaluate how the ration energy content (combined net energy, Nemf) impacts the slaughter performance, carcass characteristics, and meat qualities of Honghe yellow cattle raised in confinement. Fifteen male Honghe yellow cattle were divided into three groups based on a one-way design: a low-energy group (LEG, 3.72 MJ/kg), a medium-energy group (MEG, 4.52 MJ/kg), and a high-energy group (HEG, 5.32 MJ/kg). After a period of 70 days on these treatments, the animals were slaughtered and their slaughter performance was determined, and the longissimus dorsi muscle (LD) and biceps femoris (BF) muscles were gathered to evaluate meat quality and composition. Increasing the dietary energy concentration led to marked improvements (p < 0.05) in the live weight before slaughter (LWBS), weight of carcass, backfat thickness, and loin muscle area. HEG also improved the yield of high-grade commercial cuts (13.47% vs. 10.39%) (p < 0.05). However, meat quality traits were not affected by treatment except for shear force, which was affected by dietary energy. A significant improvement (p < 0.05) in the intramuscular fat (IMF) content was observed in the HEG. Little effect on the amino acid profile was observed (p > 0.05), except for a tendency (p = 0.06) to increase the histidine concentration in the BF muscle. Increasing dietary energy also reduced C22:6n-3 and saturated fatty acids (SFAs) and enhanced C18:1 cis-9 and monounsaturated fatty acids (MUFAs, p < 0.05). Those results revealed that increasing energy levels of diets could enhance slaughter traits and affect the meat quality and fatty acid composition of different muscle tissues of Honghe yellow cattle. These results contribute to the theoretical foundation to formulate nutritional standards and design feed formulas for the Honghe yellow cattle.

2.
Front Microbiol ; 15: 1335818, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38628860

RESUMEN

This study was conducted to investigate the effects of dietary energy levels on microorganisms and short-chain fatty acids (SCFAs) of rumen and the expression of tight junction proteins in Honghe Yellow cattle. A total of fifteen male Honghe Yellow cattle were randomly divided into three treatments (five replicates per treatment), consisting of formulated energy concentrations of 5.90 MJ/kg (high-energy diet, group H), 5.60 MJ/kg (medium-energy diet, group M) and 5.30 MJ/kg (low-energy diet, group L). The results showed that compared with group H, the expression of Claudin-1 in rumen epithelium of groups M and L was increased, but the expression of ZO-1 was decreased (p < 0.05). Moreover, compared with group H, group M down-regulated the expression of Occludin and Claudin-1 in the brain (p < 0.05). For rumen bacteria, the dominant phyla included Bacteroidetes and Firmicutes, the abundance of Actinobacteriota in groups M and L was significantly increased compared with group H (p < 0.05). At the genus level, the relative abundance of Corynebacterium, Eubacterium_nodatum_group and Neisseraceae in groups M and L was significantly decreased compared with group H (p < 0.05). For rumen fungi, the dominant phyla included Basidiomycota, Ascomycota and Neocariastigomycota, the relative abundance of Ascomycetes was significantly higher than that of groups M and L compared with group H (p < 0.05). At the genus level, the relative abundance of Neocelimastigaceae and Myceliophthora in groups M and L was significantly reduced compared with group H (p < 0.05). Furthermore, the expression of Claudin-1 in rumen epithelium was significantly positively correlated with Actinobacteriota, Corynebacterium and Neisseriaceae. The expression of ZO-1 in the spinal cord was significantly positively correlated with Myceliophthora. The expression of Occludin in brain was positively correlated with valerate content (p < 0.05). In summary, dietary energy levels affected the rumen microbiota of Honghe Yellow cattle. The expression of Claudin-1 in rumen epithelium and the total SCFAs concentration were increased with decreasing dietary energy levels, but the expression of Claudin-1 in brain and ZO-1 in the spinal cord were reduced with decreasing dietary energy levels. Meanwhile, the rumen microbiota and SCFAs were significantly correlated with the expression of TJP.

3.
J Anim Physiol Anim Nutr (Berl) ; 107(6): 1356-1367, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37555469

RESUMEN

This study was to evaluate the effects of supplementing mixed dietary fibres (MDF) and essential oils blend (EOB) either alone or in combination on growth performance and intestinal barrier function in weaned piglets challenged with enterotoxigenic Escherichia coli K88 (ETEC). Forty-two piglets (28 days old) were randomly allocated into six treatments in a 25-day experiment, and fed the basal diet (CON or ETEC) either with antibiotics (AT), MDF, EOB or MDF + EOB. On Day 22 of the experiment, pigs in CON and challenged groups (ETEC, AT, MDF, EOB and MDF + EOB) were orally administered sterile saline and ETEC containing 6 × 1010 CFU/kg body weight respectively. On Day 26, all pigs were euthanized to collect samples. Before ETEC challenge, piglets in MDF and EOB had lower diarrhoea incidence (p < 0.01) than others. After ETEC challenge, piglets in ETEC had lower average daily gain and higher diarrhoea incidence (p < 0.05) than those of CON. Furthermore, compared to CON, ETEC group increased the serum lipopolysaccharide concentration and diamine oxidase activity, and decreased mRNA levels of genes relating to barrier function (aquaporin 3, AQP3; mucin1, MUC1; zonula occludens-1, ZO-1; Occludin), and increased the concentration of cytokines (interleukin-1ß/4/6/10, IL-1ß/4/6/10) and secretory immunoglobulin A (sIgA) in jejunal mucosa (p < 0.05). However, these deleterious effects induced by ETEC were partly alleviated by MDF, EOB, MDF + EOB and AT. Additionally, compared to ETEC group, MDF increased Bifidobacterium abundance in cecal digesta and butyrate concentration in colonic digesta (p < 0.05). Also, EOB improved propionate concentration in cecal digesta, and MDF + EOB decreased IL-10 concentration in jejunal mucosa (p < 0.05) compared with ETEC. Conclusively, MDF and EOB either alone or in combination can improve growth performance and alleviate diarrhoea via improving intestinal barrier function of piglets after ETEC challenge, and all may serve as potential alternatives to AT for piglets.


Asunto(s)
Escherichia coli Enterotoxigénica , Infecciones por Escherichia coli , Aceites Volátiles , Enfermedades de los Porcinos , Animales , Porcinos , Infecciones por Escherichia coli/veterinaria , Infecciones por Escherichia coli/microbiología , Aceites Volátiles/farmacología , Diarrea/veterinaria , Diarrea/microbiología , Mucosa Intestinal , Antibacterianos/farmacología , Enfermedades de los Porcinos/microbiología
4.
J Anim Sci Biotechnol ; 14(1): 44, 2023 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-36932457

RESUMEN

BACKGROUND: Intestinal inflammation is the main risk factor causing intestinal barrier dysfunction and lipopolysaccharide (LPS) can trigger inflammatory responses in various eukaryotic species. Yeast hydrolysate (YH) possesses multi-biological effects and is received remarkable attention as a functional ingredient for improving growth performance and promoting health in animals. However, there is still inconclusive on the protective effects of dietary YH supplementation on intestinal barrier of piglets. This study was conducted to investigate the attenuate effects of YH supplementation on inflammatory responses and intestinal barrier injury in piglets challenged with LPS. METHODS: Twenty-four piglets (with an average body weight of 7.42 ± 0.34 kg) weaned at 21 days of age were randomly assigned to one of two dietary treatments (12 replications with one pig per pen): a basal diet or a basal diet containing YH (5 g/kg). On the 22nd d, 6 piglets in each treatment were intraperitoneally injected with LPS at 150 µg/kg BW, and the others were injected with the same amount of sterile normal saline. Four hours later, blood samples of each piglet were collected and then piglets were euthanized. RESULTS: Dietary YH supplementation increased average daily feed intake and average daily gain (P < 0.01), decreased the ratio of feed intake to gain of piglets (P = 0.048). Lipopolysaccharide (LPS) injection induced systemic inflammatory response, evidenced by the increase of serum concentrations of haptoglobin (HP), adrenocorticotropic hormone (ACTH), cortisol, and interleukin-1ß (IL-1ß). Furthermore, LPS challenge resulted in inflammatory intestinal damage, by up-regulation of the protein or mRNA abundances of tumor necrosis factor-α (TNF-α), IL-1ß, toll-like receptors 4 (TLR4) and phosphor-nuclear factor-κB-p65 (p-NFκB-p65) (P < 0.01), and down-regulation of the jejunal villus height, the protein and mRNA abundances of zonula occludens-1 (ZO-1) and occludin (OCC; P < 0.05) in jejunal mucosa. Dietary YH supplementation decreased the impaired effects of ACTH, cortisol, HP, IL-1ß and diamine oxidase in serum (P < 0.05). Moreover, YH supplementation also up-regulated the jejunal villus height, protein and mRNA abundances of ZO-1 and OCC (P < 0.05), down-regulated the mRNA expressions of TNF-α and IL-1ß and the protein abundances of TNF-α, IL-1ß, TLR4 and p-NFκB-p65 in jejunal mucosa in LPS-challenged pigs (P < 0.01). CONCLUSION: Yeast hydrolysate could attenuate inflammatory response and intestinal barrier injury in weaned piglets challenged with LPS, which was associated with the inhibition of TLR4/NF-κB signaling pathway activation.

5.
J Anim Sci ; 1012023 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-36930062

RESUMEN

Two experiments were carried out to evaluate the effects of betaine (BET) supplementation in diets with reduced net energy (NE) levels on growth performance, nutrient digestibility, and serum metabolomic profiles in growing pigs. In experiment 1, 24 growing pigs (initial body weight, BW, 30.83 ±â€…2.50 kg) were allotted to one of the four treatments (six replications with 1 pig per pen) in a 2 × 2 factorial arrangement, including two dietary NE levels (2475 [N-NE] or 2395 [R80-NE] kcal/kg) and two BET doses (0 or 1500 mg/kg). In experiment 2, 72 growing pigs were used in a 2 × 3 factorial arrangement, including three dietary NE levels (2475 [N-NE], 2415 [R60-NE], or 2355 [R120-NE] kcal/kg) and two BET doses (0 or 1500 mg/kg). Pigs with initial BW of 31.44 ±â€…1.65 kg were divided to one of the six treatments (six replications with 2 pigs per pen). In experiment 1, lowing NE concentrations increased average daily feed intake (ADFI) by 10.69% in pigs fed the diet without BET (P > 0.05). BET significantly increased ADFI in N-NE diet (P < 0.05) but had no influence on ADFI in R80-NE diet (P > 0.05). BET enhanced the apparent digestibility of crude protein (CP), dry matter (DM), organic matter (OM), gross energy (GE), and ether extract (EE) in R80-NE diet (P < 0.05). In experiment 2, lowing NE concentrations enhanced ADFI (P > 0.05) and decreased average daily gain (ADG; P < 0.05). The reduction in feed intake by BET was further enhanced as NE concentrations decreased from 2415 to 2355 kcal/kg (P < 0.10). BET reversed the elevation of serum triglyceride, alkaline phosphatase, aspartate aminotransferase, and alanine aminotransferase levels caused by R120-NE diet (P < 0.05). The concentrations of cholecystokinin and glucagon-like peptide 1 were increased by BET in pigs fed the R120-NE diet (P < 0.05). Serum metabolomics reveals that lowing dietary NE concentrations affected mainly amino acid biosynthetic pathways (P < 0.05). BET supplementation in R120-NE diet up-regulated serum BET levels and down-regulated homocysteine, DL-carnitine, and four amino acid secondary metabolites (P < 0.05). In conclusion, lowing dietary NE contents reduced the growth performance and caused metabolic abnormalities in growing pigs. However, BET decreased feed intake to a certain extent and improved the metabolic health of pigs fed the low-NE diets, which may be related to the dual regulation of amino acid metabolism and the secretion of appetite related hormones by BET.


Energy is an important factor in affecting the production efficiency and feed cost in animal husbandry. For pigs, the reduction of dietary energy will lead to a decreased growth performance. Therefore, additional researches towards ameliorating the negative effects caused by low energy diets are necessary to conduct, so as to develop appropriate nutritional strategies. Betaine, a trimethyl derivative of glycine, is considered to affect energy partitioning. Betaine may influence the growth performance and healthy status of pigs under low-energy conditions. Herein, two experiments were carried out to evaluate the effects of betaine supplementation in diets with reduced net energy levels on growth performance, nutrient digestibility, and serum metabolomic profiles in growing pigs. Results indicated that lowering dietary energy reduced growth performance and caused metabolic abnormalities in growing pigs, however, betaine supplementation in low-energy diets improved metabolic homeostasis and the utilization of energy despite reduced feed intake to a certain extent.


Asunto(s)
Betaína , Suplementos Dietéticos , Porcinos , Animales , Betaína/farmacología , Dieta/veterinaria , Aminoácidos/metabolismo , Nutrientes , Alimentación Animal/análisis , Digestión , Fenómenos Fisiológicos Nutricionales de los Animales
6.
Foods ; 12(3)2023 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-36766024

RESUMEN

This study was designed to investigate the effects of dietary betaine supplementation on growth performance, meat quality and muscle lipid metabolism of growing-finishing pigs. Thirty-six crossbred pigs weighing 24.68 ± 0.97 kg were randomly allotted into two treatments consisting of a basal diet supplemented with 0 or 1200 mg/kg betaine. Each treatment included six replications of three pigs per pen. Following 119 days of feeding trial, dietary betaine supplementation significantly enhanced average daily gain (ADG) (p < 0.05) and tended to improve average daily feed intake (ADFI) (p = 0.08) and decreased the feed intake to gain ratio (F/G) (p = 0.09) in pigs during 100~125 kg. Furthermore, a tendency to increase ADG (p = 0.09) and finial body weight (p = 0.09) of pigs over the whole period was observed in the betaine diet group. Betaine supplementation significantly increased a*45 min and marbling and decreased b*24 h and cooking loss in longissimus lumborum (p < 0.05), tended to increase intramuscular fat (IMF) content (p = 0.08), however had no significant influence on carcass characteristics (p > 0.05). Betaine supplementation influenced the lipid metabolism of pigs, evidenced by a lower serum concentration of low-density lipoprotein cholesterol (p < 0.05), an up-regulation of mRNA abundance of fatty acid synthase and acetyl-CoA carboxylase (p < 0.05), and a down-regulation of mRNA abundance of lipolysis-related genes, including the silent information regulators of transcription 1 (p = 0.08), peroxisome proliferator-activated receptorα (p < 0.05), peroxisome proliferator-activated receptor gamma coactivator-1α (p = 0.07) and carnitine palmitoyl transferase 1 (p < 0.05) in longissimus lumborum. Moreover, betaine markedly improved the expression of microRNA-181a (miR-181a) (p < 0.05) and tended to enhance miR-370 (p = 0.08). Overall, betaine supplementation at 1200 mg/kg could increase the growth performance of growing-finishing pigs. Furthermore, betaine had a trend to improve meat quality and IMF content via increasing lipogenesis and down-regulating the abundance of genes associated with lipolysis, respectively, which was associated with the regulation of miR-181a and miR-370 expression by betaine.

7.
J Anim Physiol Anim Nutr (Berl) ; 105(5): 898-907, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33715204

RESUMEN

The present study investigated the effects of Bacillus coagulans and yeast hydrolysate supplementation on growth performance, immune response and intestinal barrier function of weaned piglets. Twenty-four weaned piglets with an average body weight (BW) of 6.89 ± 0.15 kg were divided into four diets for 28 days. The treatments were basal diet (control), basal diet supplemented with antibiotic (20 mg/kg colistin sulphate and 40 mg/kg bacitracin zinc, AT), probiotics (400 mg/kg Bacillus coagulans ≥5 × 109 CFU/g, BC) or yeast hydrolysate (5000 mg/kg yeast hydrolysate, YH). Average daily gain (ADG) and average daily feed intake (ADFI) were improved by AT and YH diets (p < 0.05), while BC diet only increased ADG (p < 0.05). The complement 3 (C3), lysozyme (LZM) and tumour necrosis factor-α (TNF-α) concentrations in serum were increased in BC diet (p < 0.05). Feeding AT and YH caused the increase of jejunal villus height (p < 0.05), and a higher ratio of villus height/crypt depth was observed in AT, BC and YH groups (p < 0.05). The mRNA expression of zonula occludens-1 (ZO-1) in jejunal mucosa was up-regulated by AT, BC and YH diets (p < 0.05). Dietary AT, BC or YH inclusion decreased the interleukin-1ß (IL-1ß) concentration and TNF-α mRNA expression (p < 0.05), and YH supplementation even down-regulated toll-like receptor 4 (TLR4) and CD14 expressions (p < 0.05). In summary, the dietary administration of BC or YH both improves growth performance through promoting the intestinal barrier function, indicating both of them can serve as potential alternatives to antibiotics growth promoters for the piglet production.


Asunto(s)
Bacillus coagulans , Animales , Dieta/veterinaria , Suplementos Dietéticos , Inmunidad , Mucosa Intestinal , Saccharomyces cerevisiae , Porcinos
8.
Anim Nutr ; 5(4): 366-372, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31890913

RESUMEN

This study was to investigate the effects of dietary supplementation of Bacillus coagulans (BC) and yeast hydrolysates (YH) on growth performance, antioxidant activity, cytokines and intestinal microflora of growing-finishing pigs. Thirty-six barrows (initial BW = 26.87 ± 2.65 kg) were assigned randomly to 3 treatments with 4 replicates, 3 pigs per replicate. Pigs in the control group (CON) were fed a basal diet, and the diets for the other 2 groups were the basal diet plus BC at 200 mg/kg and the basal diet plus YH at 3,000 mg/kg. The trial lasted for 104 d. Compared with CON, YH treatment significantly increased average daily gain (ADG) and average daily feed intake (ADFI) during the finishing phase (P < 0.05), and significantly enhanced ADG during the overall period (P < 0.05). Dietary inclusion of BC tended to increase ADFI during the finishing period (P = 0.08). Compared with CON, BC treatment improved lysozyme (LZM), complement 3 (C3), complement 4 (C4), interlenkin-10 (IL-10) and total antioxidant capacity (T-AOC) level in serum (P < 0.05). Dietary inclusion of YH enhanced the serum IL-10 level (P < 0.05) and tended to increase T-AOC level (P = 0.06). Dietary inclusion of YH elevated (P < 0.05) the number of Lactobacillus and Bacillus in cecal contents of pigs, promoted the populations of Bifidobacterium and Bacillus in colonic contents. Moreover, the BC diet increased (P < 0.05) the count of Bifidobacterium in colonic contents. These results indicated that dietary BC supplementation is beneficial to improve the immunity. Dietary YH supplementation promoted the growth performance and the populations of beneficial bacteria in the hindgut of the growing-finishing pigs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...