Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Front Plant Sci ; 13: 1035137, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36388472

RESUMEN

Soil nitrogen forms are important for exotic plant invasions. However, little effort has been made to study the molecular mechanisms underlying the utilization of different N forms in co-occurring invasive and native plants. The invasive plant Xanthium strumarium prefers nitrate relative to ammonium, and mainly invades nitrate-dominated environments, while it co-occurring native congener X. sibiricum prefers ammonium. Here, we addressed the genetic bases for the interspecific difference in ammonium use and the effects of gibberellin (GA). Twenty-six transcripts related with GA biosynthesis and ammonium utilization were induced by ammonium in X. sibiricum, while only ten in X. strumarium and none for ammonium uptake. XsiAMT1.1a, XsiGLN1.1 and XsiGLT1b may be crucial for the strong ability to absorb and assimilate ammonium in X. sibiricum. All tested transcripts were significantly up-regulated by GA1 and GA4 in X. sibiricum. XsiGA3OX1a, which was also induced by ammonium, may be involved in this regulation. Consistently, glutamine synthetase activity increased significantly with increasing ammonium-N/nitrate-N ratio for X. sibiricum, while decreased for X. strumarium. Our study is the first to determine the molecular mechanisms with which invasive and native plants use ammonium differently, contributing to understanding the invasion mechanisms of X. strumarium and its invasion habitat selection.

2.
Front Plant Sci ; 13: 835498, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35371151

RESUMEN

Allotetraploidization between A and S (closely related to B) genome species led to the speciation of allotetraploid wheat (genome BBAA). However, the immediate metabolic outcomes and adaptive changes caused by the allotetraploidization event are poorly understood. Here, we investigated how allotetraploidization affected salinity tolerance using a synthetic allotetraploid wheat line (genome SlSlAA, labeled as 4x), its Aegilops longissima (genome SlSl, labeled as SlSl) and Triticum urartu (AA genome, labeled as AA) parents. We found that the degree of salinity tolerance of 4x was similar to its SlSl parent, and both were substantially more tolerant to salinity stress than AA. This suggests that the SlSl subgenome exerts a dominant effect for this trait in 4x. Compared with SlSl and 4x, the salinity-stressed AA plants did not accumulate a higher concentration of Na+ in leaves, but showed severe membrane peroxidation and accumulated a higher concentration of ROS (H2O2 and O2 ⋅⁣-) and a lesser concentration of flavonoids, indicating that ROS metabolism plays a key role in saline sensitivity. Exogenous flavonoid application to roots of AA plants significantly relieved salinity-caused injury. Our results suggest that the higher accumulation of flavonoids in SlSl may contribute to ROS scavenging and salinity tolerance, and these physiological properties were stably inherited by the nascent allotetraploid SlSlAA.

3.
Chemosphere ; 292: 133462, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34973255

RESUMEN

Potentially toxic elements (PTEs) are harmful to plant growth and reduce crop productivity. In this work, we studied three rice genotypes (T-35, RZ-1, and RZ-2) to quantify the diverse PTE effects and tolerances by examining morphology, physiology, and DNA methylation patterns. Morphological results showed that T-35 exhibits the highest tolerance to all studied PTE stressors (Cu, Cd, Cr). Physiological responses under PTE stresses confirmed earlier findings, where T-35 showed a higher potassium (K+) content and more peroxidase (POD) accumulation in the roots than the other two rice genotypes. The differences in PTE tolerance levels observed among the three rice genotypes were also associated with variations in the heavy metal transportation (HMT) gene expression level. Moreover, methylation-sensitive blotting analysis of the selected genes showed that the DNA methylation changes occurring due to PTE treatments are mainly CHG hypomethylation in T-35 but hypermethylation in RZ-1 and RZ-2. Our results demonstrate a tight relationship among physiological response, expression levels of the HMT genes, and DNA methylation pattern under PTEs stresses. It is also indicated that plants use generic mechanisms to tolerate stresses; however, different genotypes employ different combinations of such tactics to confer tolerance, which results in diverse PTE stress tolerances. These findings shed light on the PTE stresses tolerance mechanism and help direct future breeding activities in rice.


Asunto(s)
Metales Pesados , Oryza , Metilación de ADN , Regulación de la Expresión Génica de las Plantas , Genotipo , Oryza/genética , Raíces de Plantas , Estrés Fisiológico/genética
4.
Front Genet ; 11: 687, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32733539

RESUMEN

Polyploidy, or whole genome duplication (WGD), is a driving evolutionary force across the tree of life and has played a pervasive role in the evolution of the plant kingdom. It is generally believed that a major genetic attribute contributing to the success of polyploidy is increased gene and genome dosage. The evolution of polyploid wheat has lent support to this scenario. Wheat has evolved at three ploidal levels: diploidy, tetraploidy, and hexaploidy. Ample evidence testifies that the evolutionary success, be it with respect to evolvability, natural adaptability, or domestication has dramatically increased with each elevation of the ploidal levels. A long-standing question is what would be the outcome if a further elevation of ploidy is superimposed on hexaploid wheat? Here, we characterized a spontaneously occurring nonaploid wheat individual in selfed progenies of synthetic hexaploid wheat and compared it with its isogenic hexaploid siblings at the phenotypic, cytological, and genome-wide gene-expression levels. The nonaploid manifested severe defects in growth and development, albeit with a balanced triplication of the three wheat subgenomes. Transcriptomic profiling of the second leaf of nonaploid, taken at a stage when phenotypic abnormality was not yet discernible, already revealed significant dysregulation in global-scale gene expression with ca. 25.2% of the 49,436 expressed genes being differentially expressed genes (DEGs) at a twofold change cutoff relative to the hexaploid counterpart. Both up- and downregulated DEGs were identified in the nonaploid vs. hexaploid, including 457 genes showing qualitative alteration, i.e., silencing or activation. Impaired functionality at both cellular and organismal levels was inferred from gene ontology analysis of the DEGs. Homoeologous expression analysis of 9,574 sets of syntenic triads indicated that, compared with hexaploid, the proportions showing various homeologous expression patterns were highly conserved in the nonaploid although gene identity showed moderate reshuffling among some of the patterns in the nonaploid. Together, our results suggest hexaploidy is likely the upper limit of ploidy level in wheat; crossing this threshold incurs severe ploidy syndrome that is preceded by disruptive dysregulation of global gene expression.

5.
Theor Appl Genet ; 132(8): 2295-2308, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31098756

RESUMEN

KEY MESSAGE: We report rampant homoeologous exchanges in progenies of a newly synthesized rice segmental allotetraploid and demonstrate their consequences to changes of gene expression and alternative splicing. Allopolyploidization is recurrent across the tree of angiosperms and known as a driving evolutionary force in both plants and animals. A salient feature of allopolyploidization is the induction of homoeologous exchange (HE) events between the constituent subgenomes, which may in turn cause changes in gene expression, transcript alternative splicing, and phenotypic novelty. However, this issue has been poorly studied, largely because lack of a system in which the exact parentage donating the subgenomes is known and the HE events are occurring in real time. Here, we employed whole-genome re-sequencing and RNA-seq-based transcriptome profiling in four randomly chosen progeny individuals (at the 10th-selfed generation) of segmental allotetraploids that were constructed by colchicine-mediated whole-genome doubling of F1 hybrids between the two subspecies (japonica and indica) of Asian cultivated Oryza sativa. We show that rampant HE events occurred in these tetraploid individuals, which converted most of the otherwise heterozygous genomic regions into a homogenized state of one parental subgenome. We demonstrate that genes within these homogenized genomic regions in the tetraploids showed high frequencies of altered expression and enhanced alternative splicing relative to their counterparts in the corresponding diploid parents in the embryo tissue. Intriguingly, limited overlaps between the differentially expressed genes and the differential alternative spliced genes were identified, which were partitioned to distinctly enriched gene ontology terms. Together, our results indicate that HE is a major mechanism to rapidly generate novelty in gene expression and transcriptome diversity, which may facilitate phenotypic innovation in nascent allopolyploids and relevant to allopolyploid crop breeding.


Asunto(s)
Empalme Alternativo/genética , Regulación de la Expresión Génica de las Plantas , Oryza/genética , Poliploidía , Diploidia , Genoma de Planta
6.
Genes Genomics ; 40(1): 99-107, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29892900

RESUMEN

Imprinted gene expression in flowering plants predominantly occurs in the triploid endosperm of developing seed. However, endosperm is composed of distinct tissue types. For example, the maize (Zea mays) endosperm is constituted by two major tissues, starchy endosperm and aleurone. Previous studies in imprinted gene expression have generally assumed that the different tissues constituting endosperm would behavior the same, and hence have not examined them separately. Here, to examine parental-specific expression of imprinted genes in different parts of the seed, eight previously reported maize protein-coding imprinted genes were selected, and analyzed by cleaved amplified polymorphic sequence (CAPS) coupled with Sanger sequencing for transcripts from the various seed tissues collected at 18 days after pollination (DAP). The studied tissues included seed coat, embryo, starchy endosperm and aleurone, which were collected from a pair of reciprocal F1 hybrids produced by crossing inbred lines B73 and Mo17. Six of these eight analyzed imprinted genes showed the same imprinted expression pattern between the starchy endosperm and aleurone, but two showed imprinted expression only in the starchy endosperm. Comparison of the expression pattern of 20 selected imprinted genes in multiple seed tissues and vegetative tissues indicated that the majority (~ 75%) of these imprinted genes exhibited seed-specific or endosperm-specific expression. Our results also uncovered that imprinted genes have a high propensity to be alternatively spliced via intron retention in the developing embryo compared with the other tissues.


Asunto(s)
Endospermo/genética , Impresión Genómica/genética , Proteínas de Plantas/genética , Metilación de ADN , Perfilación de la Expresión Génica/métodos , Regulación de la Expresión Génica de las Plantas/genética , Genes de Plantas , Genoma de Planta , Intrones , Semillas/genética , Análisis de Secuencia de ARN , Almidón/metabolismo , Transcriptoma/genética , Zea mays/genética
7.
Sci Rep ; 7(1): 2675, 2017 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-28572585

RESUMEN

Gene and genome duplication fosters genetic novelty, but redundant gene copies would undergo mutational decay unless preserved via selective or neutral forces. Molecular mechanisms mediating duplicate preservation remain incompletely understood. Several recent studies showed an association between DNA methylation and expression divergence of duplicated genes and suggested a role of epigenetic mechanism in duplicate retention. Here, we compare genome-wide gene-body CG methylation (BCGM) and duplicate gene expression between a rice mutant null for OsMet1-2(a major CG methytransferase in rice) and its isogenic wild-type. We demonstrate a causal link between BCGM divergence and expression difference of duplicate copies. Interestingly, the higher- and lower-expressing copies of duplicates as separate groups show broadly different responses with respect to direction of expression alteration upon loss of BCGM. A role for BCGM in conditioning expression divergence between copies of duplicates generally holds for duplicates generated by whole genome duplication (WGD) or by small-scale duplication processes. However, differences are evident among these categories, including a higher proportion of WGD duplicates manifesting expression alteration, and differential propensities to lose BCGM by the higher- and lower-expression copies in the mutant. Together, our results support the notion that differential epigenetic marking may facilitate long-term retention of duplicate genes.


Asunto(s)
Metilación de ADN , Genes Duplicados , Genes de Plantas , Epigénesis Genética , Evolución Molecular , Oryza/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...