Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Front Public Health ; 11: 1275551, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37965512

RESUMEN

Background: Syphilis has caused epidemics for hundreds of years, and the global syphilis situation remains serious. The reported incidence rate of syphilis in Zhejiang Province has ranked first in the province in terms of notifiable infectious diseases for many years and is the highest in China. This study attempts to use the scaling law theory to study the relationship between population size and different types of syphilis epidemics, while also exploring the main driving factors affecting the incidence of syphilis in different regions. Methods: Data on syphilis cases and affected populations at the county level were obtained from the China Disease Control and Prevention Information System. The scaling relationship between different stages of syphilis and population size was explained by scaling law. The trend of the incidence from 2016 to 2022 was tested by the joinpoint regression. The index of distance between indices of simulation and observation (DISO) was applied to evaluate the overall performance of joinpoint regression model. Furthermore, a multivariate time series model was employed to identify the main driving components that affected the occurrence of syphilis at the county level. The p value less than 0.05 or confidence interval (CI) does not include 0 represented statistical significance for all the tests. Results: From 2016 to 2022, a total of 204,719 cases of syphilis were reported in Zhejiang Province, including 2 deaths, all of which were congenital syphilis. Latent syphilis accounted for 79.47% of total syphilis cases. The annual percent change (APCs) of all types of syphilis, including primary syphilis, secondary syphilis, tertiary syphilis, congenital syphilis and latent syphilis, were - 21.70% (p < 0.001, 95% CI: -26.70 to -16.30), -16.80% (p < 0.001, 95% CI: -20.30 to -13.30), -8.70% (p < 0.001, 95% CI: -11.30 to -6.00), -39.00% (p = 0.001, 95% CI: -49.30 to -26.60) and - 7.10% (p = 0.008, 95% CI: -11.20 to -2.80), respectively. The combined scaling exponents of primary syphilis, secondary syphilis, tertiary syphilis, congenital syphilis and latent syphilis based on the random effects model were 0.95 (95% CI: 0.88 to 1.01), 1.14 (95% CI: 1.12 to 1.16), 0.43 (95% CI: 0.37 to 0.49), 0.0264 (95% CI: -0.0047 to 0.0575) and 0.88 (95% CI: 0.82 to 0.93), respectively. The overall average effect values of the endemic component, spatiotemporal component and autoregressive component for all counties were 0.24, 0.035 and 0.72, respectively. The values of the autoregressive component for most counties were greater than 0.7. The endemic component of the top 10 counties with the highest values was greater than 0.34. Two counties with value of the spatiotemporal component higher than 0.1 were Xihu landscape county and Shengsi county. From 2016 to 2022, the endemic and autoregressive components of each county showed obvious seasonal changes. Conclusion: The scaling exponent had both temporal trend characteristics and significant heterogeneity in the association between each type of syphilis and population size. Primary syphilis and latent syphilis exhibited a linear pattern, secondary syphilis presented a superlinear pattern, and tertiary syphilis exhibited a sublinear pattern. This suggested that further prevention of infection and transmission among high-risk populations and improvement of diagnostic accuracy in underdeveloped areas is needed. The autoregressive components and the endemic components were the main driving factors that affected the occurrence of syphilis. Targeted prevention and control strategies must be developed based on the main driving modes of the epidemic in each county.


Asunto(s)
Sífilis Congénita , Sífilis , Humanos , Sífilis/epidemiología , China/epidemiología
2.
Front Public Health ; 11: 1154944, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37427270

RESUMEN

Background: Influenza infection causes a huge burden every year, affecting approximately 8% of adults and approximately 25% of children and resulting in approximately 400,000 respiratory deaths worldwide. However, based on the number of reported influenza cases, the actual prevalence of influenza may be greatly underestimated. The purpose of this study was to estimate the incidence rate of influenza and determine the true epidemiological characteristics of this virus. Methods: The number of influenza cases and the prevalence of ILIs among outpatients in Zhejiang Province were obtained from the China Disease Control and Prevention Information System. Specimens were sampled from some cases and sent to laboratories for influenza nucleic acid testing. Random forest was used to establish an influenza estimation model based on the influenza-positive rate and the percentage of ILIs among outpatients. Furthermore, the moving epidemic method (MEM) was applied to calculate the epidemic threshold for different intensity levels. Joinpoint regression analysis was used to identify the annual change in influenza incidence. The seasonal trends of influenza were detected by wavelet analysis. Results: From 2009 to 2021, a total of 990,016 influenza cases and 8 deaths were reported in Zhejiang Province. The numbers of estimated influenza cases from 2009 to 2018 were 743,449, 47,635, 89,026, 132,647, 69,218, 190,099, 204,606, 190,763, 267,168 and 364,809, respectively. The total number of estimated influenza cases is 12.11 times the number of reported cases. The APC of the estimated annual incidence rate was 23.33 (95% CI: 13.2 to 34.4) from 2011 to 2019, indicating a constant increasing trend. The intensity levels of the estimated incidence from the epidemic threshold to the very high-intensity threshold were 18.94 cases per 100,000, 24.14 cases per 100,000, 141.55 cases per 100,000, and 309.34 cases per 100,000, respectively. From the first week of 2009 to the 39th week of 2022, there were a total of 81 weeks of epidemics: the epidemic period reached a high intensity in 2 weeks, the epidemic period was at a moderate intensity in 75 weeks, and the epidemic period was at a low intensity in 2 weeks. The average power was significant on the 1-year scale, semiannual scale, and 115-week scale, and the average power of the first two cycles was significantly higher than that of the other cycles. In the period from the 20th week to the 35th week, the Pearson correlation coefficients between the time series of influenza onset and the positive rate of pathogens, including A(H3N2), A (H1N1)pdm2009, B(Victoria) and B(Yamagata), were - 0.089 (p = 0.021), 0.497 (p < 0.001), -0.062 (p = 0.109) and - 0.084 (p = 0.029), respectively. In the period from the 36th week of the first year to the 19th week of the next year, the Pearson correlation coefficients between the time series of influenza onset and the positive rate of pathogens, including A(H3N2), A (H1N1)pdm2009, B(Victoria) and B(Yamagata), were 0.516 (p < 0.001), 0.148 (p < 0.001), 0.292 (p < 0.001) and 0.271 (p < 0.001), respectively. Conclusion: The disease burden of influenza has been seriously underestimated in the past. An appropriate method for estimating the incidence rate of influenza may be to comprehensively consider the influenza-positive rate as well as the percentage of ILIs among outpatients. The intensity level of the estimated incidence from the epidemic threshold to the very high-intensity threshold was calculated, thus yielding a quantitative standard for judging the influenza prevalence level in the future. The incidence of influenza showed semi-annual peaks in Zhejiang Province, including a main peak from December to January of the next year followed by a peak in summer. Furthermore, the driving factors of the influenza peaks were preliminarily explored. While the peak in summer was mainly driven by pathogens of A(H3N2), the peak in winter was alternately driven by various pathogens. Our research suggests that the government urgently needs to address barriers to vaccination and actively promote vaccines through primary care providers.


Asunto(s)
Epidemias , Subtipo H1N1 del Virus de la Influenza A , Vacunas contra la Influenza , Gripe Humana , Niño , Adulto , Humanos , Gripe Humana/epidemiología , Incidencia , Subtipo H3N2 del Virus de la Influenza A , China/epidemiología
3.
PLoS One ; 17(9): e0274421, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36126038

RESUMEN

BACKGROUND: Zhejiang, ranked in the top three in HFMD (hand, foot, and mouth disease) incidence, is located in the Yangtze River Delta region of southeast China. Since 2016, the EV71 vaccine has been promoted in Zhejiang Province. This study aimed to investigate the trend and seasonal variation characteristics of HFMD from 2010 to 2021 and estimate the reduction in enterovirus 71 infection after vaccine use. METHODS: The data on HFMD cases in Zhejiang Province from January 2010 to December 2021 were obtained from this network system. Individual information on cases and deaths was imported, and surveillance information, including demographic characteristics and temporal distributions, was computed by the system. The Joinpoint regression model was used to describe continuous changes in the incidence trend. The BSTS (Bayesian structural time-series models) model was used to estimate the monthly number of cases from 2017 to 2021 based on the observed monthly incidence during 2010-2016 by accounting for seasonality and long-term trends. The seasonal variation characteristics of HFMD pathogens were detected by wavelet analysis. RESULTS: From 2010 to 2021, the annual incidence rate fluctuated between 98.81 cases per 100,000 in 2020 and 435.63 cases per 100,000 in 2018, and 1711 severe HFMD cases and 106 fatal cases were reported in Zhejiang Province, China. The annual percent change (APC) in EV71 cases was -30.72% (95% CI: -45.10 to -12.50) from 2016 to 2021. The wavelet transform of total incidence and number of cases of the three pathogens all showed significant periodicity on the 1-year scale. The average 2-year scale periodicity was significant for the total incidence, EV71 cases and Cox A16 cases, but the other enterovirus cases showed significant periodicity on the 30-month scale. The 6-month scale periodicity was significant for the total incidence, EV71 case and Cox A16 case but not for the other enteroviruses case. The relative error percentage of the performance of the BSTS model was 0.3%. The estimated number of cases from 2017 to 2021 after the EV-A71 vaccines were used was 9422, and the reduction in the number of cases infected with the EV71 virus was 73.43% compared to 70.80% when the impact of the COVID-19 epidemic in 2020 was excluded. CONCLUSIONS: Since 2010, the incidence of EV71 infections has shown an obvious downward trend. All types of viruses showed significant periodicity on the 1-year scale. The periodicity of the biennial peak is mainly related to EV71 and Cox A16 before 2017 and other enteroviruses since 2018. The half-year peak cycle of HFMD was mainly caused by EV71 and Cox A6 infection. The expected incidence will be 2.76 times(include the cases of 2020) and 2.43 times(exclude the cases of 2020) higher than the actual value assuming that the measures of vaccination are not taken. EV71 vaccines are very effective and should be administered in the age window between 5 months and 5 years.


Asunto(s)
COVID-19 , Enterovirus Humano A , Infecciones por Enterovirus , Enterovirus , Enfermedad de Boca, Mano y Pie , Vacunas , Antígenos Virales , Teorema de Bayes , China/epidemiología , Enfermedad de Boca, Mano y Pie/epidemiología , Enfermedad de Boca, Mano y Pie/prevención & control , Humanos , Lactante
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...