Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
BMC Musculoskelet Disord ; 23(1): 999, 2022 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-36401231

RESUMEN

BACKGROUND: Recently, tranexamic acid (TXA) and epsilon aminocaproic acid (EACA) have been applied in total hip arthroplasty (THA). However, doubts in clinicians' minds about which medicine is more efficient and economical in THA need to be clarified. Therefore, this study compared the efficacy and cost of the intraoperative administration of TXA and EACA per surgery in decreasing perioperative blood transfusion rates in THA. METHODS:  This study enrolled patients who underwent THA between January 2019 to December 2020. A total of 295 patients were retrospectively divided to receive topical combined with intravenous TXA (n = 94), EACA (n = 97) or control (n = 104). The primary endpoints included transfusions, estimated perioperative blood loss, cost per patient and the drop in the haemoglobin and haematocrit levels. RESULTS: Patients who received EACA had greater total blood loss, blood transfusion rates, changes in HGB levels and mean cost of blood transfusion per patient (P < 0.05) compared with patients who received TXA. In addition, both TXA and EACA groups had significantly fewer perioperative blood loss, blood transfusion, operation time and changes in haemoglobin and haematocrit levels than the control group (P < 0.05). Cost savings in the TXA and EACA groups were 736.00 RMB and 408.00 RMB per patient, respectively. CONCLUSIONS: The application of perioperative antifibrinolytics notably reduces the need for perioperative blood transfusions. What's more, this study demonstrated that TXA is superior to EACA for decreasing blood loss and transfusion rates while at a lower cost per surgery. These results indicate that TXA may be the optimum antifibrinolytics for THA in Chinese area rather than EACA.


Asunto(s)
Antifibrinolíticos , Artroplastia de Reemplazo de Cadera , Ácido Tranexámico , Humanos , Artroplastia de Reemplazo de Cadera/efectos adversos , Estudios Retrospectivos , Pérdida de Sangre Quirúrgica/prevención & control , Aminocaproatos , Ácido Aminocaproico , Hemoglobinas
2.
Environ Pollut ; 247: 180-187, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30677662

RESUMEN

Hydrotalcite (HT) is a layered double hydroxide (LDH), which is considered as a potential adsorbent to remove anion contaminants. In this study, adsorption of chromate (CrO4) and phosphate (PO4) on HT was conducted at various pH and temperatures. Related adsorption mechanisms were determined via the isotherm, kinetic, and competitive adsorption studies as well as the Cr K-edge X-ray absorption fine-structure (XAFS) spectroscopy. The maximum adsorption capacities for CrO4 and PO4 on HT were 0.16 and 0.23 mmol g-1. Regarding adsorption kinetics, CrO4 and PO4 adsorption on HT could be well described by the second order model, and the rate coefficient of CrO4 and PO4 on HT decreased significantly with the increasing pH from 5 to 9. The adsorption kinetics for CrO4 and PO4 were divided into fast and slow stages with the boundary at 15 min. This biphasic adsorption behavior might be partially attributed to multiple reactive pathways including anion exchange and surface complexation. Fitting results of Cr K-edge EXAFS analysis showed a direct bonding between CrO4 and Al on HT surfaces. Such a surface complexation appeared to be the rate-limiting step for CrO4 adsorption on HT. By contrast, the diffusion through the hydrated interlayer space of HT was the major rate-limiting step for PO4. This study determined the adsorption behaviors of CrO4 and PO4 on HT, including the initial transfer process and the subsequent adsorption mechanisms. Such information could improve the strategy to use HT as the potential adsorbent for the remediation of anionic pollutants.


Asunto(s)
Hidróxido de Aluminio/química , Cromatos/química , Hidróxido de Magnesio/química , Modelos Químicos , Fosfatos/química , Adsorción , Hidróxidos , Cinética , Espectroscopía de Absorción de Rayos X
3.
J Bone Miner Res ; 30(11): 2044-57, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25917347

RESUMEN

Vascular hyperpermeability and highly upregulated bone resorption in the destructive repair progress of steroid-associated osteonecrosis (SAON) are associated with a high expression of VEGF and high Src activity (Src is encoded by the cellular sarcoma [c-src] gene). This study was designed to prove our hypothesis that blocking the VEGF-Src signaling pathway by specific Src siRNA is able to prevent destructive repair in a SAON rabbit model. Destructive repair in SAON was induced in rabbits. At 2, 4, and 6 weeks after SAON induction, VEGF, anti-VEGF, Src siRNA, Src siRNA+VEGF, control siRNA, and saline were introduced via intramedullary injection into proximal femora for each group, respectively. Vascularization and permeability were quantified by dynamic contrast-enhanced (DCE) MRI. At week 6 after SAON induction, proximal femurs were dissected for micro-computed tomography (µCT)-based trabecular architecture with finite element analysis (FEA), µCT-based angiography, and histological analysis. Histological evaluation revealed that VEGF enhanced destructive repair, whereas anti-VEGF prevented destructive repair and Src siRNA and Src siRNA+VEGF prevented destructive repair and enhanced reparative osteogenesis. Findings of angiography and histomorphometry were consistent with those determined by DCE MRI. Src siRNA inhibited VEGF-mediated vascular hyperpermeability but preserved VEGF-induced neovascularization. Bone resorption was enhanced in the VEGF group and inhibited in the anti-VEGF, Src siRNA, Src siRNA+VEGF groups as determined by both 3D µCT and 2D histomorphometry. FEA showed higher estimated failure load in the Src siRNA and Src siRNA+VEGF groups when compared to the vehicle control group. Blockage of VEGF-Src signaling pathway by specific Src siRNA was able to prevent steroid-associated destructive repair while improving reconstructive repair in SAON, which might become a novel therapeutic strategy.


Asunto(s)
Osteonecrosis/inducido químicamente , Osteonecrosis/enzimología , ARN Interferente Pequeño/metabolismo , Esteroides/efectos adversos , Cicatrización de Heridas , Familia-src Quinasas/antagonistas & inhibidores , Animales , Modelos Animales de Enfermedad , Análisis de Elementos Finitos , Técnicas de Silenciamiento del Gen , Silenciador del Gen , Masculino , Modelos Biológicos , Osteogénesis , Osteonecrosis/diagnóstico por imagen , Osteonecrosis/patología , Perfusión , Conejos , Microtomografía por Rayos X , Familia-src Quinasas/metabolismo
4.
World J Emerg Med ; 2(4): 262-6, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-25215020

RESUMEN

BACKGROUND: Because of the prevalence of diabetes, the treatment of diabetic foot is still challenging. Even an exactly proved effective and practical method can't be listed except vascular surgery which is not a long-term way for it. Spinal cord stimulation (SCS) is a very promising option in the treatment algorithm of inoperable chronic critical leg ischemia (CLI). DATA SOURCES: We searched Pubmed database with key words or terms such as "spinal cord stimulation", "ischemic pain" and "limb ischemia" appeared in the last five years. RESULTS: The mechanism of SCS is unclear. Two theories have emerged to interpret the benefits of SCS. Pain relief from SCS can be confirmed by a majority of the studies, while limb salvage and other more ambitious improvements have not come to an agreement. The complications of SCS are not fatal, but most of them are lead migration, lead connection failure, and local infection. CONCLUSIONS: SCS is a safe, promising treatment for patients with inoperable CLI. It is effective in pain reduction compared with traditional medical treatment.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA