RESUMEN
Many studies have shown that anti-aging treatment has value to prevention and treatment of some diseases. For the treatment of Parkinson' s disease, clinical and experimental researches have proved the potential value of anti-aging treatment, yet the mechanism remains unclear. For this reason, this work used the anti-aging prescriptions of Buyang Huanwu decoction in traditional Chinese medicines example to discover the anti-aging treatment mechanism on Parkinson's disease. The results showed that the mechanism of mitochondrial damage, apoptosis, free radicals and oxidative stress could contribute to the treatment of Parkinson' s disease. Buyang Huanwu decoction is more than as the carrier in this article, the discovered anti-aging treatment mechanism Parkinson's disease is not confined to Buyang Huanwu decoction, could also be used to understand the anti-aging treatment mechanism using other prescription. The main contribution of this paper is to clarify the mechanism of anti-aging treatment of Parkinson's disease, and provide a new strategy for the treatment and prevention of Parkinson's disease.
Asunto(s)
Envejecimiento/efectos de los fármacos , Medicamentos Herbarios Chinos/uso terapéutico , Enfermedad de Parkinson/tratamiento farmacológico , Apoptosis , Humanos , Medicina Tradicional China , Estrés OxidativoRESUMEN
BACKGROUND/AIM: Recent studies have demonstrated that circulating fibrocytes contribute to the formation and development of fibrosis. Curcumin, a polyphenolic compound isolated from turmeric, has been shown to have anti-fibrotic effects in various organs. We and others have demonstrated that curcumin beneficially affects the development of fibrosis. However the effect of curcumin on circulating fibrocytes has not been reported. METHODS: Human circulating fibrocytes were isolated from leukocyte concentrates of healthy human donors and identified based on the expression of CD34, CD45, collagen I (COLI), and chemokine receptor CCR7 (CCR7) via flow cytometry. Cell Counting Kit-8 was used to evaluate cell viability. The effect of curcumin on the differentiation and migration of human circulating fibrocytes was evaluated by immunofluorescence staining, flow cytometry and a transwell migration assay. Transforming growth factor (TGF)-ß1 secretion was examined by ELISA. RESULTS: Curcumin treatment (72 h; 20 µM) significantly decreased the expression of COL I, α-SMA and CCR7, as well as TGF-ßl secretion, in human circulating fibrocytes. The inhibitory effect of curcumin on the differentiation and migration of human circulating fibrocytes is likely via regulating the CCR7/CCL21 signaling pathway, in particular by reducing CCR7 expression. These observed effects may be beneficial in resolving fibrosis by suppressing TGF-ß1 secretion. CONCLUSION: Our results suggest that curcumin has the potential to suppress the differentiation and migration of circulating fibrocytes, which would provide new explanation for curcumin's application in the development of fibrosis in various organs.