Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Global Spine J ; : 21925682241274729, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39136594

RESUMEN

STUDY DESIGN: Retrospective study. OBJECTIVES: To explore the relationship between lumbar spine muscle mass and lumbar pelvic sagittal parameters in patients with degenerative scoliosis. METHODS: This study included ADS patients who were treated in our hospital from 2019 to 2023. The spinal parameters were evaluated through X-rays, and the relative muscle volume (RMV) and fat infiltration (FI) were measured through three-dimensional reconstruction. Patients were categorized into 3 groups based on SRS-Schwab sagittal balance correction (0, +, ++), and into 3 groups based on GAP score (proportioned, moderately dis-proportioned, severely dis-proportioned). Finally, patients were classified into low-quality and high-quality groups based on the FI of Paraspinal muscles (PSM). RESULTS: The study included a total of 63 patients. Significant statistical differences were observed in the FI and RMV of MF, ES and PS among patients classified by SRS-Schwab PT classification. Additionally, significant statistical differences were found in the RMV of MF and PS among patients classified by SRS-Schwab PI-LL classification and GAP score. Furthermore, a significant correlation was found between the FI and RMV of PSM and lumbopelvic sagittal parameters. The ordinal regression model analysis revealed that FI of ES significantly impacted PT imbalance, while RMV of MF significantly impacted PI-LL imbalance. Moreover, significant differences were noted in PT and PI between the low-quality and high-quality multifidus groups. CONCLUSIONS: As sagittal imbalance worsens, PSM degeneration also intensifies, primarily characterized by an increase in FI and a decrease in RMV. Notably, PT and PI-LL are positively correlated with RMV and negatively correlated with FI.

2.
Sci Rep ; 14(1): 20180, 2024 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-39215144

RESUMEN

Spinal cord injury (SCI) results in irreversible neurological impairment. After SCI, Ferritinophagy-induced free iron released from ferritin can lead to extensive lipid peroxidation and aggravate neurological damage. NRF2/HO-1 pathway is to endow cells with a protective effect against oxidative stress, and it plays an important role in the transcriptional activation of a series of antioxidant and detoxification genes. UAMC-3203 is a ferrostatin-1(Fer-1) analogue with better solubility and stability, which can more effectively inhibit ferroptosis after SCI. A rat SCI model was constructed, and the recovery of motor function was observed after treatment with UAMC-3203. ELISA was employed to assess the impact of UAMC-3203 on inflammation-related factors, while immunofluorescence was utilized to investigate the influence of UAMC-3203 on neuronal count as well as the activation of astrocytes and microglia/macrophages. Malondialdehyde (MDA) were detected to reflect the level of oxidation products. Western blot analysis was used to measure the level of ferroptosis markers and the expression of NRF2/HO-1. Our findings demonstrate that UAMC-3203 inhibits the production of reactive oxygen species (ROS) and lipid peroxides, preventing ferroptosis and reducing neuronal degeneration. Additionally, UAMC-3203 suppresses astrocyte proliferation and microglia/macrophage activation, as well as the release of ferroptosis-related inflammatory factors. These combined effects contribute to the preservation of spinal cord tissue and the facilitation of motor function recovery. UAMC-3203 maybe inhibit ferroptosis after SCI to promote functional recovery.


Asunto(s)
Ferroptosis , Factor 2 Relacionado con NF-E2 , Recuperación de la Función , Traumatismos de la Médula Espinal , Animales , Traumatismos de la Médula Espinal/metabolismo , Traumatismos de la Médula Espinal/tratamiento farmacológico , Traumatismos de la Médula Espinal/patología , Ferroptosis/efectos de los fármacos , Ratas , Recuperación de la Función/efectos de los fármacos , Factor 2 Relacionado con NF-E2/metabolismo , Ratas Sprague-Dawley , Especies Reactivas de Oxígeno/metabolismo , Modelos Animales de Enfermedad , Masculino , Ciclohexilaminas/farmacología , Estrés Oxidativo/efectos de los fármacos , Fenilendiaminas/farmacología , Astrocitos/metabolismo , Astrocitos/efectos de los fármacos , Microglía/metabolismo , Microglía/efectos de los fármacos , Peroxidación de Lípido/efectos de los fármacos , Neuronas/metabolismo , Neuronas/efectos de los fármacos , Macrófagos/metabolismo , Macrófagos/efectos de los fármacos , Hemo Oxigenasa (Desciclizante)
4.
Sci Rep ; 13(1): 19723, 2023 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-37957210

RESUMEN

Spinal cord injury (SCI) is a serious condition that results in irreparable nerve damage and severe loss of motor or sensory function. Resveratrol (3,4',5-trihy- droxystilbene) is a naturally occurring plant-based polyphenol that has demonstrated powerful antioxidative, anti-inflammatory, and anti-carcinogenic pharmaceutical properties in previous studies. In the central nervous system, it promotes neuronal recovery and protects residual function. However, the role of resveratrol in SCI recovery remains elusive. In this study, the potential mechanisms by which resveratrol affect SCI in rats were assessed by constructing a contusion model of SCI. Resveratrol was intraperitoneally administered to rats. Behavioral scores and electrophysiological examinations were performed to assess functional recovery. After magnetic resonance imaging and staining with hematoxylin and eosin (HE) and Luxor Fast Blue (LFB), tissue recovery was analyzed. Immunofluorescence with NeuN and glial fibrillary acidic protein (GFAP) was employed to evaluate neuronal survival and glial changes. TdT-mediated dUTP nick end labeling (TUNEL) assay was performed to examine apoptotic rates. Moreover, network pharmacology was performed to identify relevant pathways of resveratrol for the treatment of SCI. Lastly, ELISA was performed to detect the expression levels of interleukin-1ß (IL-1ß), tumor necrosis factor-α (TNF-α), and IL-6. Our findings revealed that resveratrol dramatically improved the hindlimb locomotor function and their electrophysiological outcomes. Notably, lesion size was significantly reduced on magnetic resonance imaging. HE and LFB staining exposed increased sparseness of tissue and myelin. GFAP and NeuN immunofluorescence assays at the lesion site determined that resveratrol boosted neuronal survival and attenuated glial cell overgrowth. In addition, resveratrol reduced the density and number of TUNEL-positive cells in rats after injury. Additionally, gene ontology analysis revealed that the enriched differentially expressed protein was associated with the JNK/p38MAPK (c-jun N-terminal kinase/p38 mitogen-activated protein kinase) signaling pathway. Following resveratrol treatment, the expression levels of IL-1ß, TNF-α, and IL-6 were decreased. In summary, the administration of resveratrol protects motor function and neuronal survival in rats after SCI. Furthermore, resveratrol exerts an anti-inflammatory effect by blocking the JNK/p38MAPK signaling pathway.


Asunto(s)
Proteínas Quinasas Activadas por Mitógenos , Traumatismos de la Médula Espinal , Ratas , Animales , Ratas Sprague-Dawley , Resveratrol/farmacología , Resveratrol/uso terapéutico , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Factor de Necrosis Tumoral alfa/farmacología , Interleucina-6/farmacología , Transducción de Señal , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Pronóstico , Antiinflamatorios/farmacología , Médula Espinal/metabolismo , Recuperación de la Función
5.
Front Neurol ; 14: 1274642, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38020620

RESUMEN

Due to the complex pathological mechanisms of Alzheimer's disease (AD), its treatment remains a challenge. One of the major difficulties in treating AD is the difficulty for drugs to cross the blood-brain barrier (BBB). Low-intensity ultrasound (LIUS) is a novel type of ultrasound with neuromodulation function. It has been widely reported that LIUS combined with intravenous injection of microbubbles (MB) can effectively, safely, and reversibly open the BBB to achieve non-invasive targeted drug delivery. However, many studies have reported that LIUS combined with MB-mediated BBB opening (LIUS + MB-BBBO) can improve pathological deposition and cognitive impairment in AD patients and mice without delivering additional drugs. This article reviews the relevant research studies on LIUS + MB-BBBO in the treatment of AD, analyzes its potential mechanisms, and summarizes relevant ultrasound parameters.

6.
Eur Spine J ; 32(11): 4020-4029, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37747546

RESUMEN

INTRODUCTION: Adult degenerative scoliosis (ADS) is a 3D deformity that greatly affects the quality of life of patients and is closely related to the quality of paraspinal muscles (PSMs), but the specific degenerative characteristics have not been described. METHODS: This study included ADS patients who were first diagnosed in our hospital from 2018 to 2022. Muscle volume (MV) and fat infiltration (FI) of PSM were measured by 3D reconstruction, and spinal parameters were assessed by X-ray. The values of convex side (CV) and concave side (CC) were compared. RESULTS: Fifty patients were enrolled with a mean age of 64.1 ± 5.8 years old. There were significant differences in MV, FI, and Cobb angle between male and female groups. The MV of MF and PS on the CC was significantly larger than that on the CV. In the apex and the segments above the apex, the FI of the MF on the CC is greater than the CV, and in the CV of the segment below the apex, the FI of the MF is greater than the CC. Besides, there was a significant positive correlation between the FI and Cobb angle in the MF of the CC-CV. CONCLUSION: There were significant differences in the MV and FI of PSM on both sides of the spine in ADS patients. It was determined that the PSM of ADS showed different degrees of degeneration in different levels of the lumbar spine and were positively correlated with Cobb angle.


Asunto(s)
Escoliosis , Humanos , Masculino , Adulto , Femenino , Persona de Mediana Edad , Anciano , Escoliosis/complicaciones , Escoliosis/diagnóstico por imagen , Escoliosis/patología , Músculos Paraespinales/diagnóstico por imagen , Músculos Paraespinales/patología , Calidad de Vida , Radiografía , Vértebras Lumbares/diagnóstico por imagen , Atrofia Muscular/diagnóstico por imagen
8.
Front Mol Neurosci ; 16: 1074703, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36793356

RESUMEN

Objective: Epimedium (EPI) is a common Chinese herb with neuroprotective effects against a variety of central nervous system disorders, especially spinal cord injury (SCI). In this study, we performed network pharmacology and molecular docking analyses to reveal the mechanism underlying EPI treatment of SCI, then validated its efficacy using animal models. Methods: The active ingredients and targets of EPI were screened by Traditional Chinese Medicine Systems Pharmacology (TCMSP) and their targets annotated on the UniProt platform. SCI-related targets were searched from OMIM, TTD, and GeneCards databases. We employed the STRING platform to construct a protein-protein interaction (PPI) network then visualized the results using Cytoscape (3.8.2) software. We also subjected key EPI targets to ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses, then docked the main active ingredients with the key targets. Finally, we established an SCI rat model to evaluate efficacy of EPI in treating SCI and validate the effects of different biofunctional modules predicted by network pharmacology. Results: A total of 133 EPI targets were associated with SCI. GO terms and KEGG pathway enrichment results showed that EPI's effect in treating SCI was significantly associated with inflammatory response, oxidative stress and the PI3K/AKT signaling pathway. Molecular docking results indicated that EPI's active ingredients have a high affinity for the key targets. Results from animal experiments revealed that EPI not only markedly improved Basso, Beattie, and Bresnahan scores in SCI rats, but also significantly improved p-PI3K/PI3K and p-AKT/AKT ratio. Moreover, EPI treatment not only mediated a significant decrease in malondialdehyde (MDA) but also increased both superoxide dismutase (SOD), and glutathione (GSH). However, this phenomenon was successfully reversed by LY294002, a PI3K inhibitor. Conclusion: EPI improves behavioral performance in SCI rats through anti-oxidative stress, which may be mediated by activation of the PI3K/AKT signaling pathway.

9.
Medicine (Baltimore) ; 101(46): e31930, 2022 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-36401438

RESUMEN

Spinal cord injury is a severe central nervous system injury that results in the permanent loss of motor, sensory, and autonomic functions below the level of injury with limited recovery. The pathological process of spinal cord injury includes primary and secondary injuries, characterized by a progressive cascade. Secondary injury impairs the ability of the mitochondria to maintain homeostasis and leads to calcium overload, excitotoxicity, and oxidative stress, further exacerbating the injury. The defective mitochondrial function observed in these pathologies accelerates neuronal cell death and inhibits regeneration. Treatment of spinal cord injury by preserving mitochondrial biological function is a promising, although still underexplored, therapeutic strategy. This review aimed to explore mitochondrial-based therapeutic advances after spinal cord injury. Specifically, it briefly describes the characteristics of spinal cord injury. It then broadly discusses the drugs used to protect the mitochondria (e.g., cyclosporine A, acetyl-L-carnitine, and alpha-tocopherol), phenomena associated with mitochondrial damage processes (e.g., mitophagy, ferroptosis, and cuproptosis), mitochondrial transplantation for nerve cell regeneration, and innovative mitochondrial combined protection therapy.


Asunto(s)
Traumatismos de la Médula Espinal , Humanos , Mitocondrias/patología , Estrés Oxidativo
10.
Front Surg ; 9: 1077353, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36684326

RESUMEN

Introduction: Anterior cervical discectomy and fusion (ACDF) is a common operation for spinal surgery to treat a variety of cervical diseases. The postoperative infection rate of this procedure is extremely low, and adjacent segments are rarely involved. Tuberculosis (TB) is a common infectious disease that affects the spine in less than 1% of cases and is more common in the thoracolumbar and rarely cervical spine. Herein, for the first time, we report tuberculosis infection in adjacent segments after ACDF. Case presentation: We report a 50-year-old patient with cervical spondylotic myelopathy (CSM) who was discharged from the hospital after receiving ACDF at the C3/4 level. Two months later, he was admitted to the hospital with neck pain and found to be infected with tuberculosis in C4/5. After 4 months of anti-tuberculosis treatment, the vertebral body was fused. Conclusion: After ACDF, the adjacent cervical vertebrae were infected with TB but the infection was limited. We believe that the special vertebral blood supply and postoperative secondary blood-borne infection may lead to the occurrence of extrapulmonary tuberculosis.

11.
Neural Regen Res ; 17(6): 1334-1342, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34782579

RESUMEN

Zebrafish are an effective vertebrate model to study the mechanisms underlying recovery after spinal cord injury. The subacute phase after spinal cord injury is critical to the recovery of neurological function, which involves tissue bridging and axon regeneration. In this study, we found that zebrafish spontaneously recovered 44% of their swimming ability within the subacute phase (2 weeks) after spinal cord injury. During this period, we identified 7762 differentially expressed genes in spinal cord tissue: 2950 were up-regulated and 4812 were down-regulated. These differentially expressed genes were primarily concentrated in the biological processes of the respiratory chain, axon regeneration, and cell-component morphogenesis. The genes were also mostly involved in the regulation of metabolic pathways, the cell cycle, and gene-regulation pathways. We verified the gene expression of two differentially expressed genes, clasp2 up-regulation and h1m down-regulation, in zebrafish spinal cord tissue in vitro. Pathway enrichment analysis revealed that up-regulated clasp2 functions similarly to microtubule-associated protein, which is responsible for axon extension regulated by microtubules. Down-regulated h1m controls endogenous stem cell differentiation after spinal cord injury. This study provides new candidate genes, clasp2 and h1m, as potential therapeutic intervention targets for spinal cord injury repair by neuroregeneration. All experimental procedures and protocols were approved by the Animal Ethics Committee of Tianjin Institute of Medical & Pharmaceutical Sciences (approval No. IMPS-EAEP-Q-2019-02) on September 24, 2019.

12.
Ann Transl Med ; 9(7): 570, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33987268

RESUMEN

BACKGROUND: Spinal cord injury (SCI) is a serious condition that can cause physical disability and sensory dysfunction. Cytokines play an extremely important role in the acute phase of SCI. Clarifying the cytokine expression profile is of great importance. METHODS: Cytokine array analysis was used to explore the changes in 67 different proteins at 0 hours, 2 hours, 1 day, 3 days, and 7 days after acute SCI in rats. The differentially expressed cytokines in the various periods were analyzed and compared. The biological processes related to the differentially expressed proteins were examined using Gene Ontology (GO) analysis. RESULTS: Immediately after SCI (0 hours), only ciliary neurotrophic factor (CNTF) was slightly up-regulated, while 23 other proteins were down-regulated. At 2 hours after SCI, there were 3 upregulated and 21 downregulated proteins. At 1 day after SCI, there were 5 upregulated and 6 downregulated proteins. At 3 days after SCI, there were 6 upregulated and 4 downregulated proteins. At 7 days after SCI, there were 4 upregulated and 9 downregulated proteins. Erythropoietin (EPO) and Fms related tyrosine kinase 3 ligand (Flt-3L) were downregulated at all time points. CD48 was decreased at 2 hours to 7 days after SCI. Monocyte chemotactic protein-1 (MCP-1) was the only protein that was upregulated at 2 hours to 7 days. The GO and pathway analyses revealed that the cytokine-related pathways, cell death, and proliferation might play a key role during secondary SCI. CONCLUSIONS: This study identified 3 downregulated proteins during SCI, that being EPO, Flt-3L, and CD48. MCP-1 was the only upregulated protein, and its expression was upregulated till day 7 following SCI. These 4 identified genes may be potential therapeutic targets for the treatment of SCI.

13.
Neural Regen Res ; 14(3): 532-541, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30539824

RESUMEN

Ferroptosis is an iron-dependent novel cell death pathway. Deferoxamine, a ferroptosis inhibitor, has been reported to promote spinal cord injury repair. It has yet to be clarified whether ferroptosis inhibition represents the mechanism of action of Deferoxamine on spinal cord injury recovery. A rat model of Deferoxamine at thoracic 10 segment was established using a modified Allen's method. Ninety 8-week-old female Wistar rats were used. Rats in the Deferoxamine group were intraperitoneally injected with 100 mg/kg Deferoxamine 30 minutes before injury. Simultaneously, the Sham and Deferoxamine groups served as controls. Drug administration was conducted for 7 consecutive days. The results were as follows: (1) Electron microscopy revealed shrunken mitochondria in the spinal cord injury group. (2) The Basso, Beattie and Bresnahan locomotor rating score showed that recovery of the hindlimb was remarkably better in the Deferoxamine group than in the spinal cord injury group. (3) The iron concentration was lower in the Deferoxamine group than in the spinal cord injury group after injury. (4) Western blot assay revealed that, compared with the spinal cord injury group, GPX4, xCT, and glutathione expression was markedly increased in the Deferoxamine group. (5) Real-time polymerase chain reaction revealed that, compared with the Deferoxamine group, mRNA levels of ferroptosis-related genes Acyl-CoA synthetase family member 2 (ACSF2) and iron-responsive element-binding protein 2 (IREB2) were up-regulated in the Deferoxamine group. (6) Deferoxamine increased survival of neurons and inhibited gliosis. These findings confirm that Deferoxamine can repair spinal cord injury by inhibiting ferroptosis. Targeting ferroptosis is therefore a promising therapeutic approach for spinal cord injury.

14.
Biomed Pharmacother ; 91: 1065-1074, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28525947

RESUMEN

The complexity of cancer has led to single-target agents exhibiting lower-than-desired clinical efficacy. Drugs with multiple targets provide a feasible option for the treatment of complex tumors. Multitarget anti-angiogenesis agents are among the new generation of anticancer drugs and have shown favorable clinical efficacy. Dianhydrogalactitol (DAG) is a chemotherapeutic agent for chronic myeloid leukemia and lung cancer. Recently, it has been tested in phase II trials of glioblastoma treatment; however, mechanisms of DAG in glioblastoma have not been elucidated. Here we show that DAG could inhibit the migration and invasion of U251 cell line by inhibiting matrix metalloproteinase-2 (MMP2) expression. Furthermore, DAG could also inhibit tumor angiogenesis in vitro as well as in the zebrafish model. Mechanistic studies reveal that DAG inhibited both VEGFR2 and FGFR1 pathways. Our results suggest that DAG may be a potential multitarget agent that can inhibit tumor migration, invasion, and angiogenesis, and the anti-angiogenic effects may be involved in dual-suppression VEGF/VEGFR2 and FGF2/FGFR1 signal pathways.


Asunto(s)
Inhibidores de la Angiogénesis/farmacología , Antineoplásicos/farmacología , Movimiento Celular/efectos de los fármacos , Dianhidrogalactitol/farmacología , Glioblastoma/tratamiento farmacológico , Invasividad Neoplásica/patología , Neovascularización Patológica/tratamiento farmacológico , Animales , Línea Celular , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Glioblastoma/metabolismo , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Metaloproteinasa 2 de la Matriz/metabolismo , Neovascularización Patológica/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Transducción de Señal/efectos de los fármacos , Factor A de Crecimiento Endotelial Vascular/metabolismo , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo , Pez Cebra
15.
Int J Nanomedicine ; 12: 263-277, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28115845

RESUMEN

Numerous studies have demonstrated promising application of single-walled carbon nanotubes (SWNTs) in drug delivery, diagnosis, and targeted therapy. However, the adverse health effects resulting from intravenous injection of SWNTs are not completely understood. Studies have shown that levels of "pristine" or carboxylated carbon nanotubes are very high in mouse lungs after intravenous injection. We hypothesized that long-term and repeated intravenous administration of carboxylated SWNTs (c-SWNTs) can result in persistent accumulation and induce histopathologic changes in rat lungs. Here, c-SWNTs were administered repeatedly to rats via tail-vein injection for 90 days. Long-term intravenous injection of c-SWNTs caused sustained embolization in lung capillaries and granuloma formation. It also induced a persistent inflammatory response that was regulated by the nuclear factor-kappa B signaling pathway, and which resulted in pulmonary fibrogenesis. c-SWNTs trapped within lung capillaries traversed capillary walls and injured alveolar epithelial cells, thereby stimulating production of pro-inflammatory cytokines (tumor necrosis factor-alpha and interleukin-1 beta) and pro-fibrotic growth factors (transforming growth factor-beta 1). Protein levels of type-I and type-III collagens, matrix metalloproteinase-2, and the tissue inhibitor of metalloproteinase-2 were upregulated after intravenous exposure to c-SWNTs as determined by immunohistochemical assays and Western blotting, which suggested collagen deposition and remodeling of the extracellular matrix. These data suggest that chronic and cumulative toxicity of nanomaterials to organs with abundant capillaries should be assessed if such nanomaterials are applied via intravenous administration.


Asunto(s)
FN-kappa B/metabolismo , Nanotubos de Carbono/toxicidad , Fibrosis Pulmonar/inducido químicamente , Administración Intravenosa , Animales , Capilares/efectos de los fármacos , Ácidos Carboxílicos/química , Citocinas/metabolismo , Femenino , Inyecciones Intravenosas , Pulmón/irrigación sanguínea , Pulmón/efectos de los fármacos , Pulmón/patología , Masculino , Nanotubos de Carbono/química , Fibrosis Pulmonar/metabolismo , Fibrosis Pulmonar/patología , Ratas Sprague-Dawley , Transducción de Señal/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...