Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Cancer Sci ; 115(5): 1459-1475, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38433526

RESUMEN

Antiangiogenic therapy targeting VEGF-A has become the standard of first-line therapy for non-small cell lung cancer (NSCLC). However, its clinical response rate is still less than 50%, and most patients eventually develop resistance, even when using combination therapy with chemotherapy. The major cause of resistance is the activation of complex bypass signals that induce angiogenesis and tumor progression. Therefore, exploring novel proangiogenic mechanisms and developing promising targets for combination therapy are crucial for improving the efficacy of antiangiogenic therapy. Immunoglobulin-like transcript (ILT) 4 is a classic immunosuppressive molecule that inhibits myeloid cell activation. Recent studies have shown that tumor cell-derived ILT4 drives tumor progression via the induction of malignant biologies and creation of an immunosuppressive microenvironment. However, whether and how ILT4 participates in NSCLC angiogenesis remain elusive. Herein, we found that enriched ILT4 in NSCLC is positively correlated with high microvessel density, advanced disease, and poor overall survival. Tumor cell-derived ILT4 induced angiogenesis both in vitro and in vivo and tumor progression and metastasis in vivo. Mechanistically, ILT4 was upregulated by its ligand angiopoietin-like protein 2 (ANGPTL2). Their interaction subsequently activated the ERK1/2 signaling pathway to increase the secretion of the proangiogenic factors VEGF-A and MMP-9, which are responsible for NSCLC angiogenesis. Our study explored a novel mechanism for ILT4-induced tumor progression and provided a potential target for antiangiogenic therapy in NSCLC.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Neovascularización Patológica , Receptores Inmunológicos , Carcinoma de Pulmón de Células no Pequeñas/patología , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/irrigación sanguínea , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Humanos , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/irrigación sanguínea , Neoplasias Pulmonares/tratamiento farmacológico , Neovascularización Patológica/metabolismo , Neovascularización Patológica/patología , Animales , Ratones , Línea Celular Tumoral , Receptores Inmunológicos/metabolismo , Femenino , Masculino , Glicoproteínas de Membrana/metabolismo , Sistema de Señalización de MAP Quinasas , Metaloproteinasa 9 de la Matriz/metabolismo , Regulación Neoplásica de la Expresión Génica , Factor A de Crecimiento Endotelial Vascular/metabolismo , Microambiente Tumoral , Angiogénesis
2.
J Chem Phys ; 127(15): 154106, 2007 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-17949131

RESUMEN

In this short paper, we introduce an approximate method for the quick estimate of rate constants based on a simple sampling method of reactive transition paths over high energy barriers. It makes use of the previously introduced accelerated molecular dynamics (MD) simulation method to generate initial points for trajectory shooting. The accelerated MD simulations, although with the loss of real dynamics, lead to a quick calculation of thermodynamic properties and at the same time produce an ensemble of configurations with an enhanced sampling over the phase space that is more "reactive." The forward/backward trajectory shooting as that used in the transition path sampling method is then initiated from the configurations obtained from accelerated MD simulations to generate transition paths on the original unbiased potential. This method selectively enhances sampling of successful trajectories and at the same time accelerates significantly the calculation of rate constants.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...