Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
CNS Neurosci Ther ; 30(6): e14781, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38887195

RESUMEN

BACKGROUND: Traumatic brain injury (TBI) and spinal cord injury (SCI) are acquired injuries to the central nervous system (CNS) caused by external forces that cause temporary or permanent sensory and motor impairments and the potential for long-term disability or even death. These conditions currently lack effective treatments and impose substantial physical, social, and economic burdens on millions of people and families worldwide. TBI and SCI involve intricate pathological mechanisms, and the inflammatory response contributes significantly to secondary injury in TBI and SCI. It plays a crucial role in prolonging the post-CNS trauma period and becomes a focal point for a potential therapeutic intervention. Previous research on the inflammatory response has traditionally concentrated on glial cells, such as astrocytes and microglia. However, increasing evidence highlights the crucial involvement of lymphocytes in the inflammatory response to CNS injury, particularly CD8+ T cells and NK cells, along with their downstream XCL1-XCR1 axis. OBJECTIVE: This review aims to provide an overview of the role of the XCL1-XCR1 axis and the T-cell response in inflammation caused by TBI and SCI and identify potential targets for therapy. METHODS: We conducted a comprehensive search of PubMed and Web of Science using relevant keywords related to the XCL1-XCR1 axis, T-cell response, TBI, and SCI. RESULTS: This study examines the upstream and downstream pathways involved in inflammation caused by TBI and SCI, including interleukin-15 (IL-15), interleukin-12 (IL-12), CD8+ T cells, CD4+ T cells, NK cells, XCL1, XCR1+ dendritic cells, interferon-gamma (IFN-γ), helper T0 cells (Th0 cells), helper T1 cells (Th1 cells), and helper T17 cells (Th17 cells). We describe their proinflammatory effect in TBI and SCI. CONCLUSIONS: The findings suggest that the XCL1-XCR1 axis and the T-cell response have great potential for preclinical investigations and treatments for TBI and SCI.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Quimiocinas C , Traumatismos de la Médula Espinal , Humanos , Traumatismos de la Médula Espinal/inmunología , Traumatismos de la Médula Espinal/metabolismo , Traumatismos de la Médula Espinal/complicaciones , Traumatismos de la Médula Espinal/patología , Lesiones Traumáticas del Encéfalo/inmunología , Lesiones Traumáticas del Encéfalo/complicaciones , Lesiones Traumáticas del Encéfalo/metabolismo , Lesiones Traumáticas del Encéfalo/patología , Animales , Quimiocinas C/metabolismo , Linfocitos T/inmunología , Linfocitos T/metabolismo , Inflamación/inmunología , Inflamación/metabolismo , Enfermedades Neuroinflamatorias/inmunología
2.
CNS Neurosci Ther ; 30(3): e14593, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38528832

RESUMEN

BACKGROUND: Inflammation can worsen spinal cord injury (SCI), with dendritic cells (DCs) playing a crucial role in the inflammatory response. They mediate T lymphocyte differentiation, activate microglia, and release cytokines like NT-3. Moreover, DCs can promote neural stem cell survival and guide them toward neuron differentiation, positively impacting SCI outcomes. OBJECTIVE: This review aims to summarize the role of DCs in SCI-related inflammation and identify potential therapeutic targets for treating SCI. METHODS: Literature in PubMed and Web of Science was reviewed using critical terms related to DCs and SCI. RESULTS: The study indicates that DCs can activate microglia and astrocytes, promote T-cell differentiation, increase neurotrophin release at the injury site, and subsequently reduce secondary brain injury and enhance functional recovery in the spinal cord. CONCLUSIONS: This review highlights the repair mechanisms of DCs and their potential therapeutic potential for SCI.


Asunto(s)
Células-Madre Neurales , Traumatismos de la Médula Espinal , Humanos , Médula Espinal , Microglía , Inflamación/complicaciones , Células Dendríticas
3.
BMC Genomics ; 24(1): 747, 2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-38057699

RESUMEN

BACKGROUND: Traumatic brain injury (TBI) is a central nervous system disease caused by external trauma, which has complex pathological and physiological mechanisms. The aim of this study was to explore the correlation between immune cell infiltration and ferroptosis post-TBI. METHODS: This study utilized the GEO database to download TBI data and performed differentially expressed genes (DEGs) and ferroptosis-related differentially expressed genes (FRDEGs) analysis. DEGs were further analyzed for enrichment using the DAVID 6.8. Immunoinfiltration cell analysis was performed using the ssGSEA package and the Timer2.0 tool. The WGCNA analysis was then used to explore the gene modules in the data set associated with differential expression of immune cell infiltration and to identify the hub genes. The tidyverse package and corrplot package were used to calculate the correlations between hub genes and immune cell infiltration and ferroptosis-marker genes. The miRDB and TargetScan databases were used to predict complementary miRNAs for the Hub genes selected from the WGCNA analysis, and the DIANA-LncBasev3 tool was used to identify target lncRNAs for the miRNAs, constructing an mRNA-miRNA-lncRNA regulatory network. RESULTS: A total of 320 DEGs and 21 FRDEGs were identified in GSE128543. GO and KEGG analyses showed that the DEGs after TBI were primarily associated with inflammation and immune response. Xcell and ssGSEA immune infiltration cell analysis showed significant infiltration of T cell CD4+ central memory, T cell CD4+ Th2, B cell memory, B cell naive, monocyte, macrophage, and myeloid dendritic cell activated. The WGCNA analysis identified two modules associated with differentially expressed immune cells and identified Lgmn as a hub gene associated with immune infiltrating cells. Lgmn showed significant correlation with immune cells and ferroptosis-marker genes, including Gpx4, Hspb1, Nfe2l2, Ptgs2, Fth1, and Tfrc. Finally, an mRNA-miRNA-lncRNA regulatory network was constructed using Lgmn. CONCLUSION: Our results indicate that there is a certain correlation between ferroptosis and immune infiltrating cells in brain tissue after TBI, and that Lgmn plays an important role in this process.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Ferroptosis , MicroARNs , ARN Largo no Codificante , Humanos , Ferroptosis/genética , ARN Largo no Codificante/genética , Lesiones Traumáticas del Encéfalo/genética , MicroARNs/genética , ARN Mensajero
4.
Behav Neurol ; 2023: 6991826, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37200987

RESUMEN

Vitamin B6 (VB6) exhibits therapeutic effects towards autism spectrum disorder (ASD), but its specific mechanism is poorly understood. Rat dams were treated with VB6 standard, VB6 deficiency, or VB6 supplementary diet, and the same treatment was provided to their offspring, with their body weights monitored. Three-chambered social test and open field test were employed to evaluate the effect of VB6 on autism-like behaviors. Gamma-aminobutyric acid (GABA) generation and synaptic inhibition of neurons in the hippocampus of rat were detected via immunofluorescence staining, followed by the measurement of GABA concentration through high-performance liquid chromatography (HPLC). The role of VB6 in the autophagy and apoptosis of cells was determined via Western blot and terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL). In order to conduct rescue experiments, the inhibition of mammalian target of rapamycin (mTOR) or the activation of GABA was achieved by drug administration to the offspring rats with VB6 deficiency. As a result, no evident difference in weight was observed in the offspring with varied VB6 treatments. VB6 deficiency impaired social interaction; aggravated self-grooming and bowel frequency; decreased GABA concentration, VIAAT, GAD67, vGAT expressions, and LC3 II/LC3 I ratio; increased p62 level and p-mTOR/mTOR ratio; and promoted cell apoptosis. Inhibition of mTOR reversed the effect of VB6 deficiency on cell autophagy. GABA activation or mTOR inhibition offset the role of VB6 deficiency in autism-like behaviors and hippocampal GABA expression. Collectively, VB6 deficiency induces autism-like behaviors in rats by regulating mTOR-mediated autophagy in the hippocampus.


Asunto(s)
Trastorno del Espectro Autista , Trastorno Autístico , Deficiencia de Vitamina B 6 , Animales , Ratas , Trastorno Autístico/metabolismo , Autofagia , Ácido gamma-Aminobutírico/metabolismo , Hipocampo/metabolismo , Mamíferos/metabolismo , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Serina-Treonina Quinasas TOR/metabolismo , Deficiencia de Vitamina B 6/metabolismo
5.
Yi Chuan ; 24(5): 607-12, 2002 Sep.
Artículo en Chino | MEDLINE | ID: mdl-16135459

RESUMEN

As important forage crops,legume forage plants can play an important role in improving natural environment, maintenins water and soil. With development of molecular biology and improvement of plant transformation techniques,molecular breeding of legume forage plants by biotechnology is possible. This review summarized recent progress on improvement of several forage crops,including improvement of nutrient quality, increase of biomass,enhancement of the assimilation and efficient absorb of nutrient element, and enhancement of abiotic and biotic stress resistance.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...