Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Plants (Basel) ; 13(10)2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38794446

RESUMEN

To cultivate excellent lily germplasms, an interspecific hybrid (LC×SQ-01) was successfully obtained by using a cut-style pollination method in which the rare wild lily Lilium callosum was used as the female parent and the cut flower L. longiflorum 'Snow Queen' was used as the male parent. The morphological features of LC×SQ-01 included height, leaf length, and width, which were observed to be between those of the parents in the tissue-cultured seedlings. The height and leaf length of LC×SQ-01 were more similar to those of the male parent, and the width was between the widths of the parents for field-generated plants. The epidermal cell length and the guard cell and stoma sizes were between those of both parents in tissue-cultured and field-generated plants. In addition, the shapes of the epidermal cells and anticlinal wall in LC×SQ-01 were more analogous to those in the male parent, while the stoma morphology was different from that of both parents. Fourteen pairs of polymorphic SSR primers were identified in both parents, and the validity of LC×SQ-01 was demonstrated by PCR amplification using five pairs of SSR primers. Flow cytometry and root tip squashing assays revealed that LC×SQ-01 was a diploid plant, similar to its parents. Furthermore, the LC×SQ-01 hybrid was more resistant to B. cinerea than its parents, and it also showed much greater peroxidase (POD) and catalase (CAT) activity than the parents. These results lay a foundation for breeding a new high-resistance and ornamental lily variety.

2.
Plant J ; 118(2): 534-548, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38230828

RESUMEN

Citrus bacterial canker (CBC) is a serious bacterial disease caused by Xanthomonas citri subsp. citri (Xcc) that adversely impacts the global citrus industry. In a previous study, we demonstrated that overexpression of an Xcc-inducible apetala 2/ethylene response factor encoded by Citrus sinensis, CsAP2-09, enhances CBC resistance. The mechanism responsible for this effect, however, is not known. In the present study, we showed that CsAP2-09 targeted the promoter of the Xcc-inducible WRKY transcription factor coding gene CsWRKY25 directly, activating its transcription. CsWRKY25 was found to localize to the nucleus and to activate transcriptional activity. Plants overexpressing CsWRKY25 were more resistant to CBC and showed higher expression of the respiratory burst oxidase homolog (RBOH) CsRBOH2, in addition to exhibiting increased RBOH activity. Transient overexpression assays in citrus confirmed that CsWRKY25 and CsRBOH2 participated in the generation of reactive oxygen species (ROS) bursts, which were able to restore the ROS degradation caused by CsAP2-09 knockdown. Moreover, CsWRKY25 was found to bind directly to W-box elements within the CsRBOH2 promoter. Notably, CsRBOH2 knockdown had been reported previously to reduce the CBC resistance, while demonstrated in this study, CsRBOH2 transient overexpression can enhance the CBC resistance. Overall, our results outline a pathway through which CsAP2-09-CsWRKY25 transcriptionally reprograms CsRBOH2-mediated ROS homeostasis in a manner conducive to CBC resistance. These data offer new insight into the mechanisms and regulatory pathways through which CsAP2-09 regulates CBC resistance, highlighting its potential utility as a target for the breeding of CBC-resistant citrus varieties.


Asunto(s)
Citrus sinensis , Citrus , Xanthomonas , Citrus/genética , Citrus/microbiología , Especies Reactivas de Oxígeno , Xanthomonas/genética , Fitomejoramiento , Citrus sinensis/genética , Citrus sinensis/microbiología , Homeostasis , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología
3.
Plants (Basel) ; 12(10)2023 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-37653909

RESUMEN

Lilium brownii var. viridulum, commonly called Longya lily, is a well-known flower and vegetable plant in China that has poor tolerance to Botrytis fungal disease. The molecularimprovement has mainly been restricted to an efficient regeneration and transformation system. In this study, the highly efficient regeneration of Longya lily was established through the optimization of embryogenic callus, adventitious shoot and rooting induction. The major factors influencing transformation (antibiotics, Agrobacterium concentration, infection time, suspension solution and coculture medium) were examined. The expression responses of PR promoters (ZmPR4 and BjCHI1) to B. cinerea were assessed in transgenic calli. The results showed that Murashige and Skoog (MS) medium with 1.0 mg·L-1 picloram (PIC) and 0.2 mg·L-1 1-naphthaleneacetic acid (NAA) under light conditions and MS with 0.5 mg·L-1 6-benzylaminopurine (6-BA) and 1.0 mg·L-1 NAA under darkness were optimal for embryogenic callus induction (64.67% rate) and proliferation (3.96 coefficient). Callus inoculation into MS containing 2.0 mg·L-1 thidiazuron (TDZ), 0.4 mg·L-1 NAA, 1.0 mg·L-1 TDZ and 0.5 mg·L-1 NAA led to shooting induction (92.22 of rate) and proliferation (3.28 of coefficient) promotion, respectively. The rooting rate reached 99.00% on MS with 0.3 mg·L-1 NAA. Moreover, a transformation rate of 65.56% was achieved by soaking the callus in Agrobacterium at an OD600 of 0.4 for 10 min in modified MS without NH4NO3 as the suspension solution and coculture medium before selecting 75 mg·L-1 hygromycin and 300 mg·L-1 cefotaxime. Only the BjCHI1 promoter was obviously expressed in transgenic calli. These results could facilitate the generation of Longya lily transgenic plants with improved B. cinerea resistance.

4.
Cell Rep Med ; 4(8): 101130, 2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37490914

RESUMEN

Signal regulatory protein (SIRPα) is an immune inhibitory receptor expressed by myeloid cells to inhibit immune cell phagocytosis, migration, and activation. Despite the progress of SIRPα and CD47 antagonist antibodies to promote anti-cancer immunity, it is not yet known whether SIRPα receptor agonism could restrain excessive autoimmune tissue inflammation. Here, we report that neutrophil- and monocyte-associated genes including SIRPA are increased in inflamed tissue biopsies from patients with rheumatoid arthritis and inflammatory bowel diseases, and elevated SIRPA is associated with treatment-refractory ulcerative colitis. We next identify an agonistic anti-SIRPα antibody that exhibits potent anti-inflammatory effects in reducing neutrophil and monocyte chemotaxis and tissue infiltration. In preclinical models of arthritis and colitis, anti-SIRPα agonistic antibody ameliorates autoimmune joint inflammation and inflammatory colitis by reducing neutrophils and monocytes in tissues. Our work provides a proof of concept for SIRPα receptor agonism for suppressing excessive innate immune activation and chronic inflammatory disease treatment.


Asunto(s)
Colitis , Neoplasias , Humanos , Fagocitosis , Neoplasias/tratamiento farmacológico , Neutrófilos/metabolismo , Inflamación/patología , Colitis/metabolismo
5.
Mucosal Immunol ; 16(4): 432-445, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37172907

RESUMEN

Allergic asthma is a chronic lung disease characterized by airway hyperresponsiveness and cellular infiltration that is exacerbated by immunoglobulin E-dependent mast cell (MC) activation. Interleukin-9 (IL-9) promotes MC expansion during allergic inflammation but precisely how IL-9 expands tissue MCs and promotes MC function is unclear. In this report, using multiple models of allergic airway inflammation, we show that both mature MCs (mMCs) and MC progenitors (MCp) express IL-9R and respond to IL-9 during allergic inflammation. IL-9 acts on MCp in the bone marrow and lungs to enhance proliferative capacity. Furthermore, IL-9 in the lung stimulates the mobilization of CCR2+ mMC from the bone marrow and recruitment to the allergic lung. Mixed bone marrow chimeras demonstrate that these are intrinsic effects in the MCp and mMC populations. IL-9-producing T cells are both necessary and sufficient to increase MC numbers in the lung in the context of allergic inflammation. Importantly, T cell IL-9-mediated MC expansion is required for the development of antigen-induced and MC-dependent airway hyperreactivity. Collectively, these data demonstrate that T cell IL-9 induces lung MC expansion and migration by direct effects on the proliferation of MCp and the migration of mMC to mediate airway hyperreactivity.


Asunto(s)
Asma , Interleucina-9 , Mastocitos , Receptores CCR2 , Asma/metabolismo , Movimiento Celular , Proliferación Celular , Inflamación/metabolismo , Interleucina-9/metabolismo , Pulmón/metabolismo , Receptores CCR2/genética , Receptores CCR2/metabolismo , Animales
6.
J Immunol ; 210(5): 537-546, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36637217

RESUMEN

CD4+ TH cells develop into subsets that are specialized in the secretion of particular cytokines to mediate restricted types of inflammation and immune responses. Among the subsets that promote development of allergic inflammatory responses, IL-9-producing TH9 cells are regulated by a number of transcription factors. We have previously shown that the E26 transformation-specific (Ets) family members PU.1 and Ets translocation variant 5 (ETV5) function in parallel to regulate IL-9. In this study we identified a third member of the Ets family of transcription factors, Ets-related gene (ERG), that mediates IL-9 production in TH9 cells in the absence of PU.1 and ETV5. Chromatin immunoprecipitation assays revealed that ERG interaction at the Il9 promoter region is restricted to the TH9 lineage and is sustained during murine TH9 polarization. Knockdown or knockout of ERG during murine or human TH9 polarization in vitro led to a decrease in IL-9 production in TH9 cells. Deletion of ERG in vivo had modest effects on IL-9 production in vitro or in vivo. However, in the absence of PU.1 and ETV5, ERG was required for residual IL-9 production in vitro and for IL-9 production by lung-derived CD4 T cells in a mouse model of chronic allergic airway disease. Thus, ERG contributes to IL-9 regulation in TH9 cells.


Asunto(s)
Alveolitis Alérgica Extrínseca , Asma , Hipersensibilidad , Neumonía , Animales , Humanos , Ratones , Linfocitos T CD4-Positivos , Diferenciación Celular , Interleucina-9 , Neumonía/metabolismo , Linfocitos T Colaboradores-Inductores , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Regulador Transcripcional ERG/metabolismo
7.
Nat Commun ; 13(1): 3811, 2022 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-35778404

RESUMEN

Although IL-9 has potent anti-tumor activity in adoptive cell transfer therapy, some models suggest that it can promote tumor growth. Here, we show that IL-9 signaling is associated with poor outcomes in patients with various forms of lung cancer, and is required for lung tumor growth in multiple mouse models. CD4+ T cell-derived IL-9 promotes the expansion of both CD11c+ and CD11c- interstitial macrophage populations in lung tumor models. Mechanistically, the IL-9/macrophage axis requires arginase 1 (Arg1) to mediate tumor growth. Indeed, adoptive transfer of Arg1+ but not Arg1- lung macrophages to Il9r-/- mice promotes tumor growth. Moreover, targeting IL-9 signaling using macrophage-specific nanoparticles restricts lung tumor growth in mice. Lastly, elevated expression of IL-9R and Arg1 in tumor lesions is associated with poor prognosis in lung cancer patients. Thus, our study suggests the IL-9/macrophage/Arg1 axis is a potential therapeutic target for lung cancer therapy.


Asunto(s)
Interleucina-9 , Neoplasias Pulmonares , Macrófagos , Animales , Carcinogénesis/metabolismo , Interleucina-9/genética , Interleucina-9/metabolismo , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Macrófagos/metabolismo , Macrófagos/patología , Macrófagos Alveolares/metabolismo , Ratones
8.
Sci Immunol ; 7(72): eabo5407, 2022 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-35749515

RESUMEN

Differing from the mouse Foxp3 gene that encodes only one protein product, human FOXP3 encodes two major isoforms through alternative splicing-a longer isoform (FOXP3 FL) containing all the coding exons and a shorter isoform lacking the amino acids encoded by exon 2 (FOXP3 ΔE2). The two isoforms are naturally expressed in humans, yet their differences in controlling regulatory T cell phenotype and functionality remain unclear. In this study, we show that patients expressing only the shorter isoform fail to maintain self-tolerance and develop immunodeficiency, polyendocrinopathy, and enteropathy X-linked (IPEX) syndrome. Mice with Foxp3 exon 2 deletion have excessive follicular helper T (TFH) and germinal center B (GC B) cell responses, and develop systemic autoimmune disease with anti-dsDNA and antinuclear autoantibody production, as well as immune complex glomerulonephritis. Despite having normal suppressive function in in vitro assays, regulatory T cells expressing FOXP3 ΔE2 are unstable and sufficient to induce autoimmunity when transferred into Tcrb-deficient mice. Mechanistically, the FOXP3 ΔE2 isoform allows increased expression of selected cytokines, but decreased expression of a set of positive regulators of Foxp3 without altered binding to these gene loci. These findings uncover indispensable functions of the FOXP3 exon 2 region, highlighting a role in regulating a transcriptional program that maintains Treg stability and immune homeostasis.


Asunto(s)
Autoinmunidad , Linfocitos T Reguladores , Animales , Autoinmunidad/genética , Exones/genética , Factores de Transcripción Forkhead , Humanos , Ratones , Isoformas de Proteínas/metabolismo
9.
J Invest Dermatol ; 142(10): 2805-2816.e4, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35378112

RESUMEN

Atopic dermatitis results in profound changes in the function of the skin that include diminished barrier function and altered production of antimicrobial peptides. Our previous work in a model of allergic skin inflammation identified a defect in the wound healing process that was dependent on IL-4. In this report, we show that allergic skin inflammation results in a dramatic decrease in the presence of the Vγ3+ dendritic epidermal T-cell (DETC) population of γδ T cells in the skin. In mice that express an active signal transducer and activator of transcription 6 in T cells, DETCs are lost early in life. The loss of DETCs is entirely dependent on IL-4 and is recovered with a genetic deficiency of IL-4. Moreover, injection of IL-4 into wild-type mice results in acute loss of the DETC population. A similar loss of DETCs was observed in mice treated topically with MC903. Wounding of skin from Stat6VT-transgenic or MC903-treated mice resulted in decreased production of DETC-dependent cytokines in the skin, coincident with diminished wound closure. Importantly, intradermal injection of the DETC-produced cytokine fibroblast GF 7 rescued the rate of wound closure in mice with allergic skin inflammation. Together, these results suggest that the atopic environment diminishes prohealing T-cell populations in the skin, resulting in attenuated wound healing responses.


Asunto(s)
Dermatitis Atópica , Animales , Citocinas , Inflamación , Interleucina-4 , Ratones , Ratones Endogámicos C57BL , Receptores de Antígenos de Linfocitos T gamma-delta/metabolismo , Factor de Transcripción STAT6 , Piel/metabolismo , Cicatrización de Heridas
10.
Sci Immunol ; 7(69): eabg9296, 2022 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-35302861

RESUMEN

Asthma is a chronic inflammatory lung disease with intermittent flares predominately mediated through memory T cells. Yet, the identity of long-term memory cells that mediate allergic recall responses is not well defined. In this report, using a mouse model of chronic allergen exposure followed by an allergen-free rest period, we characterized a subpopulation of CD4+ T cells that secreted IL-9 as an obligate effector cytokine. IL-9-secreting cells had a resident memory T cell phenotype, and blocking IL-9 during a recall challenge or deleting IL-9 from T cells significantly diminished airway inflammation and airway hyperreactivity. T cells secreted IL-9 in an allergen recall-specific manner, and secretion was amplified by IL-33. Using scRNA-seq and scATAC-seq, we defined the cellular identity of a distinct population of T cells with a proallergic cytokine pattern. Thus, in a recall model of allergic airway inflammation, IL-9 secretion from a multicytokine-producing CD4+ T cell population was required for an allergen recall response.


Asunto(s)
Asma , Hipersensibilidad , Alérgenos , Linfocitos T CD4-Positivos , Citocinas , Humanos , Inflamación , Interleucina-9
11.
Plant Cell Rep ; 41(4): 995-1012, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35195770

RESUMEN

KEY MESSAGE: Botrytis cinerea induced expression of 15 LrWRKY genes; overexpression of LrWRKY39 and LrWRKY41a increased resistance and susceptibility, respectively, to B. cinerea in a manner related to SA and JA signaling. WRKY transcription factors (TFs), a large family, play important roles in coping with biotic stresses. Lilium regale Wilson is a lily species with strong resistance to fungi and viruses; however, functional characterization of LrWRKY TFs remains very limited. Here, a total of 25 LrWRKY members were identified from the L. regale transcriptome, and 15 LrWRKY genes were significantly induced by Botrytis cinerea. Based on their structural features, B. cinerea-responsive LrWRKY genes could be classified into six subgroups (Groups I, IIa-d, and III), and sequence alignment showed that 12 LrWRKY proteins have a well-conserved WRKYGQK domain, while 3 LrWRKYs have a variant sequence (WRKYGKK or WRMYEQK). Quantitative RT-PCR analysis revealed tissue-specific expression of B. cinerea-responsive LrWRKY genes and their expression profiles in response to defense-related hormones salicylic acid (SA), methyl jasmonate (MeJA) and hydrogen peroxide. LrWRKY39 and LrWRKY41a, which encode two LrWRKY TFs with different three-dimensional (3D) models of the WRKY domain, were cloned, and both proteins were targeted to the nucleus. Overexpression of LrWRKY39 and LrWRKY41a in Arabidopsis thaliana increased the resistance and susceptibility to B. cinerea, respectively, compared to the wild type. Similar results were also observed in tobacco and lily (L. longiflorum 'Snow Queen') by transient transformation analyses. Their distinct roles may be related to changes in the transcript levels of SA-/JA-responsive genes. Our results provide new insights into B. cinerea-responsive LrWRKY members and the biological functions of two different 3D models of LrWRKY TFs in defense responses to B. cinerea infection.


Asunto(s)
Arabidopsis , Lilium , Arabidopsis/genética , Botrytis/fisiología , Ciclopentanos/metabolismo , Ciclopentanos/farmacología , Resistencia a la Enfermedad/genética , Regulación de la Expresión Génica de las Plantas , Lilium/genética , Lilium/metabolismo , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Ácido Salicílico/metabolismo , Ácido Salicílico/farmacología , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
12.
Sci Immunol ; 7(68): eabi9768, 2022 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-35179949

RESUMEN

Despite IL-9 functioning as a pleiotropic cytokine in mucosal environments, the IL-9-responsive cell repertoire is still not well defined. Here, we found that IL-9 mediates proallergic activities in the lungs by targeting lung macrophages. IL-9 inhibits alveolar macrophage expansion and promotes recruitment of monocytes that develop into CD11c+ and CD11c- interstitial macrophage populations. Interstitial macrophages were required for IL-9-dependent allergic responses. Mechanistically, IL-9 affected the function of lung macrophages by inducing Arg1 activity. Compared with Arg1-deficient lung macrophages, Arg1-expressing macrophages expressed greater amounts of CCL5. Adoptive transfer of Arg1+ lung macrophages but not Arg1- lung macrophages promoted allergic inflammation that Il9r-/- mice were protected against. In parallel, the elevated expression of IL-9, IL-9R, Arg1, and CCL5 was correlated with disease in patients with asthma. Thus, our study uncovers an IL-9/macrophage/Arg1 axis as a potential therapeutic target for allergic airway inflammation.


Asunto(s)
Asma/inmunología , Interleucina-9/inmunología , Macrófagos Alveolares/inmunología , Alérgenos/inmunología , Animales , Antígenos Dermatofagoides/inmunología , Arginasa/genética , Arginasa/inmunología , Quimiocina CCL5/inmunología , Preescolar , Femenino , Humanos , Lactante , Inflamación/inmunología , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Receptores de Interleucina-9/genética , Receptores de Interleucina-9/inmunología
13.
J Immunol ; 206(9): 2088-2100, 2021 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-33879580

RESUMEN

Preserving appropriate function and metabolism in regulatory T (Treg) cells is crucial for controlling immune tolerance and inflammatory responses. Yet how Treg cells coordinate cellular metabolic programs to support their functional specification remains elusive. In this study, we report that BATF couples the TH2-suppressive function and triglyceride (TG) metabolism in Treg cells for controlling allergic airway inflammation and IgE responses. Mice with Treg-specific ablation of BATF developed an inflammatory disorder characterized by TH2-type dominant responses and were predisposed to house dust mite-induced airway inflammation. Loss of BATF enabled Treg cells to acquire TH2 cell-like characteristics. Moreover, BATF-deficient Treg cells displayed elevated levels of cellular TGs, and repressing or elevating TGs, respectively, restored or exacerbated their defects. Mechanistically, TCR/CD28 costimulation enhanced expression and function of BATF, which sustained IRF4 activity to preserve Treg cell functionality. Thus, our studies reveal that BATF links Treg cell functional specification and fitness of cellular TGs to control allergic responses, and suggest that therapeutic targeting of TG metabolism could be used for the treatment of allergic disease.


Asunto(s)
Hipersensibilidad , Linfocitos T Reguladores , Animales , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Ratones , Ratones Noqueados , Pyroglyphidae , Triglicéridos
14.
Plant Physiol Biochem ; 157: 379-389, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33197727

RESUMEN

In plants, genes involved in the Phenylpropanoid/monolignol pathway play important roles in lignin biosynthesis and plant immunity. However, their biological function in Lilium remains poorly characterized. Comparative RNA sequencing of the expression profiles of the monolignol pathway genes from fungi-resistant species Lilium regale after inoculation with Botrytis cinerea was performed. One upregulated caffeoyl-CoA O-methyltransferase gene, LrCCoAOMT, was cloned for functional characterization by reverse genetic methods. LrCCoAOMT encodes a putative protein of 246 amino acids and is highly expressed in stem tissues and responsive to salicylic acid (SA) signaling and B. cinerea infection. LrCCoAOMT was largely directed to the cytoplasm. LrCCoAOMT overexpression in Arabidopsis resulted in an increased lignin deposition in vascular tissues and conferred resistance to B. cinerea infection in transgenic plants. Transient transformation of LrCCoAOMT in nonresistant Lilium sargentiae leaves also identified the defense function to B. cinerea. In addition, transcript levels of genes involved in the monolignol and SA-dependent signaling pathways were altered in transgenic Arabidopsis, suggesting that LrCCoAOMT might play vital roles in the resistance of L. regale to B. cinerea related to the levels of lignin and the regulation of SA signaling. This is the first report to functionally characterize a CCoAOMT gene in Lilium, a potential molecular target for lily molecular improvement.


Asunto(s)
Botrytis/patogenicidad , Resistencia a la Enfermedad/genética , Lilium/enzimología , Metiltransferasas/genética , Enfermedades de las Plantas/genética , Proteínas de Plantas/genética , Regulación de la Expresión Génica de las Plantas , Lilium/genética , Lilium/microbiología , Enfermedades de las Plantas/microbiología , Plantas Modificadas Genéticamente
15.
PLoS One ; 15(10): e0239605, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33006971

RESUMEN

The lily, a famous bulbous flower, is seriously affected by high temperatures, which affect their growth and production. To date, the signalling pathways and the molecular mechanisms related to heat response in Lilium have not been elucidated. In this study, a comparative transcriptome analysis was performed in an important thermo-tolerant flower, L. longiflorum, and a thermo-sensitive flower, L. distichum. Lily seedlings were first exposed to heat stress at 42°C for different lengths of time, and the optimal time-points (2 h and 24 h) were selected for RNA sequencing (RNA-seq). Approximately 66.51, 66.21, and 65.36 Mb clean reads were identified from three libraries of L. longiflorum (LL_CK, LL_T2h and LL_T24h, respectively) and 66.18, 66.03, and 65.16 Mb clean reads were obtained from three libraries of L. distichum (LD_CK, LD_T2h and LD_T24h, respectively) after rRNA removing. A total of 34,301 unigenes showed similarity to known proteins in the database NCBI non-redundant protein (NR), Swiss-Prot proteins, InterPro proteins, Clusters of Orthologous Groups (COG) and Kyoto Encyclopedia of Genes and Genomes (KEGG). In addition, 1,621 genes were differentially expressed in the overlapping libraries between LL_DEGs and LD_DEGs; of these genes, 352 DEGs were obviously upregulated in L. longiflorum and downregulated in L. distichum during heat stress, including 4-coumarate, CoA ligase (4CL), caffeoyl-CoA O-methyltransferase (CCoAOMT), peroxidase, pathogenesis-related protein 10 family genes (PR10s), 14-3-3 protein, leucine-rich repeat receptor-like protein kinase, and glycine-rich cell wall structural protein-like. These genes were mainly involved in metabolic pathways, phenylpropanoid biosynthesis, plant-pathogen interactions, plant hormone signal transduction, and kinase signalling pathways. Quantitative RT-PCR was performed to validate the expression profiling of these DEGs in RNA-seq data. Taken together, the results obtained in the present study provide a comprehensive sequence resource for the discovery of heat-resistance genes and reveal potential key components that are responsive to heat stress in lilies, which may help to elucidate the heat signal transcription networks and facilitate heat-resistance breeding in lily.


Asunto(s)
Lilium/genética , Lilium/fisiología , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Factores de Transcripción del Choque Térmico/genética , Factores de Transcripción del Choque Térmico/fisiología , Respuesta al Choque Térmico/genética , Respuesta al Choque Térmico/fisiología , Lilium/crecimiento & desarrollo , Redes y Vías Metabólicas/genética , Anotación de Secuencia Molecular , Familia de Multigenes , Proteínas de Plantas/genética , Proteínas de Plantas/fisiología , RNA-Seq , Transducción de Señal/genética , Especificidad de la Especie , Termotolerancia/genética , Termotolerancia/fisiología
16.
Nat Commun ; 11(1): 4882, 2020 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-32985505

RESUMEN

T helper cell differentiation requires lineage-defining transcription factors and factors that have shared expression among multiple subsets. BATF is required for development of multiple Th subsets but functions in a lineage-specific manner. BATF is required for IL-9 production in Th9 cells but in contrast to its function as a pioneer factor in Th17 cells, BATF is neither sufficient nor required for accessibility at the Il9 locus. Here we show that STAT5 is the earliest factor binding and remodeling the Il9 locus to allow BATF binding in both mouse and human Th9 cultures. The ability of STAT5 to mediate accessibility for BATF is observed in other Th lineages and allows acquisition of the IL-9-secreting phenotype. STAT5 and BATF convert Th17 cells into cells that mediate IL-9-dependent effects in allergic airway inflammation and anti-tumor immunity. Thus, BATF requires the STAT5 signal to mediate plasticity at the Il9 locus.


Asunto(s)
Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/inmunología , Interleucina-9/inmunología , Factor de Transcripción STAT5/inmunología , Linfocitos T Colaboradores-Inductores/inmunología , Animales , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Diferenciación Celular , Femenino , Humanos , Interleucina-9/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Factor de Transcripción STAT5/genética , Linfocitos T Colaboradores-Inductores/citología , Células Th17/inmunología
17.
Antioxidants (Basel) ; 9(3)2020 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-32245199

RESUMEN

Eucalyptus is a worldwide hard-wood species which increasingly focused on. To adapt to various biotic and abiotic stresses, Eucalyptus have evolved complex mechanisms, increasing the cellular concentration of reactive oxygen species (ROS) by numerous ROS controlling enzymes. To better analyse the ROS gene network and discuss the differences between four Eucalyptus species, ROS gene network including 11 proteins families (1CysPrx, 2CysPrx, APx, APx-R, CIII Prx, Diox, GPx, Kat, PrxII, PrxQ and Rboh) were annotated and compared in an expert and exhaustive manner from the genomic data available from E. camaldulensis, E. globulus, E. grandis, and E. gunnii. In addition, a specific sequencing strategy was performed in order to determine if the missed sequences in at least one organism are the results of gain/loss events or only sequencing gaps. We observed that the automatic annotation applied to multigenic families is the source of miss-annotation. Base on the family size, the 11 families can be categorized into duplicated gene families (CIII Prx, Kat, 1CysPrx, and GPx), which contain a lot of gene duplication events and non-duplicated families (APx, APx-R, Rboh, DiOx, 2CysPrx, PrxII, and PrxQ). The gene family sizes are much larger in Eucalyptus than most of other angiosperms due to recent gene duplications, which could give higher adaptability to environmental changes and stresses. The cross-species comparative analysis shows gene gain and loss events during the evolutionary process. The 11 families possess different expression patterns, while in the Eucalyptus genus, the ROS families present similar expression patterns. Overall, the comparative analysis might be a good criterion to evaluate the adaptation of different species with different characters, but only if data mining is as exhaustive as possible. It is also a good indicator to explore the evolutionary process.

18.
J Allergy Clin Immunol ; 146(5): 1121-1136.e9, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32179158

RESUMEN

BACKGROUND: Bcl6 is required for the development of T follicular helper cells and T follicular regulatory (Tfr) cells that regulate germinal center responses. Bcl6 also affects the function of regulatory T (Treg) cells. OBJECTIVE: The goal of this study was to define the functions of Bcl6 in Treg cells, including Tfr cells, in the context of allergic airway inflammation. METHODS: We used a model of house dust mite sensitization to challenge wild-type, Bcl6fl/fl Foxp3-Cre, and Prdm1 (Blimp1)fl/fl Foxp3-Cre mice to study the reciprocal roles of Bcl6 and Blimp1 in allergic airway inflammation. RESULTS: In the house dust mite model, Tfr cells repress the production of IgE and Bcl6+ Treg cells suppress the generation of type 2 cytokine-producing cells in the lungs. In mice with Bcl6-deficient Treg cells, twice as many ST2+ (IL-33R+) Treg cells develop as are observed in wild-type mice. ST2+ Treg cells in the context of allergic airway inflammation are Blimp1 dependent, express type 2 cytokines, and share features of visceral adipose tissue Treg cells. Bcl6-deficient Treg cells are more susceptible, and Blimp1-deficient Treg cells are resistant, to acquiring the ST2+ Treg-cell phenotype in vitro and in vivo in response to IL-33. Bcl6-deficient ST2+ Treg cells, but not Bcl6-deficient ST2+ conventional T cells, strongly promote allergic airway inflammation when transferred into recipient mice. Lastly, ST2 is required for the exacerbated allergic airway inflammation in Bcl6fl/fl Foxp3-Cre mice. CONCLUSIONS: During allergic airway inflammation, Bcl6 and Blimp1 play dual roles in regulating Tfr-cell activity in the germinal center and in the development of ST2+ Treg cells that promote type 2 cytokine responses.


Asunto(s)
Centro Germinal/inmunología , Hipersensibilidad/inmunología , Neumonía/inmunología , Factor 1 de Unión al Dominio 1 de Regulación Positiva/metabolismo , Proteínas Proto-Oncogénicas c-bcl-6/metabolismo , Linfocitos T Reguladores/inmunología , Células Th2/inmunología , Traslado Adoptivo , Animales , Antígenos Dermatofagoides/inmunología , Diferenciación Celular , Células Cultivadas , Citocinas/metabolismo , Humanos , Proteína 1 Similar al Receptor de Interleucina-1/metabolismo , Activación de Linfocitos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Factor 1 de Unión al Dominio 1 de Regulación Positiva/genética , Proteínas Proto-Oncogénicas c-bcl-6/genética , Pyroglyphidae
19.
PLoS One ; 14(10): e0223498, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31584990

RESUMEN

Citrus bacterial canker (CBC) caused by Xanthomonas citri subsp. citri (Xcc) is a systemic bacterial disease that affects citrus plantations globally. Biotic stress in plants has been linked to a group of important transcription factors known as Basic Leucine Zippers (BZIPs). In this study, CsBZIP40 was functionally characterized by expression analysis, including induction by Xcc and hormones, subcellular localization, over-expression and RNAi silencing. CsBZIP40 belongs to group D of the CsBZIP family of transcription factors and localizes in the nucleus, potentially serving as a transcriptional regulator. In wild type (WT) plants CsBZIP40 can be induced by plant hormones in addition to infection by Xcc which has given insight into its involvement in CBC. In the present study, over-expression of CsBZIP40 conferred resistance to Xcc while its silencing led to Xcc susceptibility. Both over-expression and RNAi affected salicylic acid (SA) production and expression of the genes involved in the SA synthesis and signaling pathway, in addition to interaction of CsBZIP40 with CsNPR1, as detected by a GST pull-down assay. Taken together, the results of this study confirmed the important role of CsBZIP40 in improving resistance to citrus canker through the SA signaling pathway by the presence of NPR1 to activate PR genes. Our findings are of potential value in the breeding of tolerance to CBC in citrus fruits.


Asunto(s)
Adaptación Biológica , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Citrus sinensis/genética , Citrus/genética , Citrus/microbiología , Interacciones Huésped-Patógeno , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Regulación de la Expresión Génica de las Plantas , Modelos Moleculares , Fenotipo , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Reguladores del Crecimiento de las Plantas/metabolismo , Transporte de Proteínas
20.
Int J Mol Sci ; 20(17)2019 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-31450644

RESUMEN

Auxin response factors (ARFs) are important regulators modulating the expression of auxin-responsive genes in various biological processes in plants. In the Populus genome, a total of 39 ARF members have been identified, but their detailed functions are still unclear. In this study, six poplar auxin response factor 2 (PtrARF2) members were isolated from P. trichocarpa. Expression pattern analysis showed that PtrARF2.1 is highly expressed in leaf tissues compared with other PtrARF2 genes and significantly repressed by exogenous auxin treatment. PtrARF2.1 is a nuclear-localized protein without transcriptional activation activity. Knockdown of PtrARF2.1 by RNA interference (RNAi) in poplars led to the dwarf plant, altered leaf shape, and reduced size of the leaf blade, while overexpression of PtrARF2.1 resulted in a slight reduction in plant height and the similar leaf phenotype in contrast to the wildtype. Furthermore, histological staining analysis revealed an ectopic deposition of lignin in leaf veins and petioles of PtrARF2.1-RNAi lines. RNA-Seq analysis showed that 74 differential expression genes (DEGs) belonging to 12 transcription factor families, such as NAM, ATAF and CUC (NAC), v-myb avian myeloblastosis viral oncogene homolog (MYB), ethylene response factors (ERF) and basic helix-loop-helix (bHLH), were identified in PtrARF2.1-RNAi leaves and other 24 DEGs were associated with the lignin biosynthetic pathway. Altogether, the data indicate that PtrARF2.1 plays an important role in regulating leaf development and influences the lignin biosynthesis in poplars.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Lignina/biosíntesis , Desarrollo de la Planta/genética , Hojas de la Planta/fisiología , Proteínas de Plantas/genética , Populus/fisiología , Factores de Transcripción/genética , Secuencia de Aminoácidos , Vías Biosintéticas/genética , Clonación Molecular , Especificidad de Órganos , Fenotipo , Filogenia , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Populus/clasificación , Análisis de Secuencia de ADN , Factores de Transcripción/metabolismo , Transcriptoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA