Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Pharm Res ; 40(11): 2541-2554, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37498500

RESUMEN

BACKGROUND: Cerebral vascular protection is critical for stroke treatment. Adenosine modulates vascular flow and exhibits neuroprotective effects, in which brain extracellular concentration of adenosine is dramatically increased during ischemic events and ischemia-reperfusion. Since the equilibrative nucleoside transporter-2 (Ent2) is important in regulating brain adenosine homeostasis, the present study aimed to investigate the role of Ent2 in mice with cerebral ischemia-reperfusion. METHODS: Cerebral ischemia-reperfusion injury was examined in mice with transient middle cerebral artery occlusion (tMCAO) for 90 minutes, followed by 24-hour reperfusion. Infarct volume, brain edema, neuroinflammation, microvascular structure, regional cerebral blood flow (rCBF), cerebral metabolic rate of oxygen (CMRO2), and the production of reactive oxygen species (ROS) were examined following the reperfusion. RESULTS: Ent2 deletion reduced the infarct volume, brain edema, and neuroinflammation in mice with cerebral ischemia-reperfusion. tMCAO-induced disruption of brain microvessels was ameliorated in Ent2-/- mice, with a reduced expression of matrix metalloproteinases-9 and aquaporin-4 proteins. Following the reperfusion, the rCBF of the wild-type (WT) mice was quickly restored to the baseline, whereas, in Ent2-/- mice, rCBF was slowly recovered initially, but was then higher than that in the WT mice at the later phase of reperfusion. The improved CMRO2 and reduced ROS level support the beneficial effects caused by the changes in the rCBF of Ent2-/- mice. Further studies showed that the protective effects of Ent2 deletion in mice with tMCAO involve adenosine receptor A2AR. CONCLUSIONS: Ent2 plays a critical role in modulating cerebral collateral circulation and ameliorating pathological events of brain ischemia and reperfusion injury.


Asunto(s)
Edema Encefálico , Isquemia Encefálica , Daño por Reperfusión , Animales , Ratones , Adenosina , Edema Encefálico/tratamiento farmacológico , Edema Encefálico/patología , Isquemia Encefálica/tratamiento farmacológico , Infarto de la Arteria Cerebral Media/tratamiento farmacológico , Enfermedades Neuroinflamatorias , Proteínas de Transporte de Nucleósidos , Especies Reactivas de Oxígeno/metabolismo , Reperfusión , Daño por Reperfusión/tratamiento farmacológico , Daño por Reperfusión/metabolismo
2.
Cell J ; 23(6): 684-691, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34939762

RESUMEN

OBJECTIVE: Reportedly, circular RNAs (circRNAs) exert a crucial regulatory role in cancer. Circ_0001073 is derived from exons 3-5 of ACVR2A gene, which inhibits cancer progression. However, the role and mechanism of circ_0001073 in non-small cell lung cancer (NSCLC) are unclear. This study aimed to explore the role and mechanism of circ_0001073 in the development of NSCLC. MATERIALS AND METHODS: In this experimental study, microarray analysis was employed to filter differential expressed circRNAs in NSCLC tissues. Also, circ_0001073, microRNA-582-3p (miR-582-3p), and repulsive guidance molecule B (RGMB) mRNA expressions were examined by quantitative real-time polymerase chain reaction (qRT-PCR). NSCLC cell multiplication was measured by the cell counting kit-8 (CCK-8) assay. Scratch healing experiment and Transwell experiment were performed to assess cell migration and invasion, respectively. Flow cytometry was applied to analyze the apoptosis of NSCLC cells. Western blot was employed to assess RGMB protein expression. Additionally, dualluciferase reporter gene experiment and RNA immunoprecipitation (RIP) experiment were applied to probe the binding sites between miR-582-3p and circ_0001073 or RGMB. RESULTS: circ_0001073 was remarkably under-expressed in NSCLC tissues and cells. circ_0001073 overexpression impeded the multiplication, migration, and invasion and enhanced the apoptosis of NSCLC cells in vitro. circ_0001073 directly bound to miR-582-3p and acted as a miRNA sponge to regulate RGMB expression. Besides, miR-582-3p overexpression or knockdown of RGMB remarkably reversed the malignant phenotypes of NSCLC cells induced by the up-regulation of circ_0001073 expression. CONCLUSION: Circ_0001073 up-regulates RGMB expression through adsorbing miR-582-3p to inhibit NSCLC progression, suggesting its potential as a novel therapeutic target in NSCLC.

3.
Acta Pharmacol Sin ; 42(10): 1556-1566, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33495516

RESUMEN

Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder caused by toxic aggregates of mutant huntingtin protein (mHTT) in the brain. Decreasing mHTT is a potential strategy for therapeutic purpose of HD. Valosin-containing protein (VCP/p97) is a crucial regulator of proteostasis, which regulates the degradation of damaged protein through proteasome and autophagy pathway. Since VCP has been implicated in pathogenesis of HD as well as other neurodegenerative diseases, small molecules that specifically regulate the activity of VCP may be of therapeutic benefits for HD patients. In this study we established a high-throughput screening biochemical assay for VCP ATPase activity measurement and identified gossypol, a clinical approved drug in China, as a novel modulator of VCP. Gossypol acetate dose-dependently inhibited the enzymatic activity of VCP in vitro with IC50 of 6.53±0.6 µM. We further demonstrated that gossypol directly bound to the interface between the N and D1 domains of VCP. Gossypol acetate treatment not only lowered mHTT levels and rescued HD-relevant phenotypes in HD patient iPS-derived Q47 striatal neurons and HD knock-in mouse striatal cells, but also improved motor function deficits in both Drosophila and mouse HD models. Taken together, gossypol acetate acted through a gain-of-function way to induce the formation of VCP-LC3-mHTT ternary complex, triggering autophagic degradation of mHTT. This study reveals a new strategy for treatment of HD and raises the possibility that an existing drug can be repurposed as a new treatment of neurodegenerative diseases.


Asunto(s)
Autofagia/efectos de los fármacos , Gosipol/uso terapéutico , Proteína Huntingtina/metabolismo , Enfermedad de Huntington/tratamiento farmacológico , Fármacos Neuroprotectores/uso terapéutico , Animales , Drosophila , Inhibidores Enzimáticos/uso terapéutico , Femenino , Células HEK293 , Células HeLa , Humanos , Proteína Huntingtina/química , Proteína Huntingtina/genética , Masculino , Ratones , Proteínas Asociadas a Microtúbulos/metabolismo , Mutación , Multimerización de Proteína/efectos de los fármacos , Proteolisis/efectos de los fármacos , Proteína que Contiene Valosina/antagonistas & inhibidores , Proteína que Contiene Valosina/metabolismo
4.
Int J Genomics ; 2019: 9815697, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30805354

RESUMEN

Coix lacryma-jobi L. is an important minor cereal with a high nutritional and medicinal value in Asian countries. The hilly region of South China is the secondary center of diversity of Coix lacryma-jobi L. In the present study, we took a sample of 139 Coix lacryma-jobi L. genotypes from four geographical regions in Southwest China and analyzed the genetic diversity and population structure using AFLP markers. Six primer combinations detected a total of 743 (89.52%) polymorphic loci. The percentage of polymorphic bands within the four geographical populations ranged from 56.02% (Guangxi) to 86.75% (Guizhou). The overall genetic diversity of 139 Coix lacryma-jobi L. was relatively low (h ranged from 0.1854 to 0.2564). The neighbor-joining method grouped all Coix lacryma-jobi L. genotypes into two clusters with no geographical affinity observed among genotypes within the same group. The Fst indicated the two clusters existed great genetic differentiation. AMOVA analysis showed the molecular variation within populations was much higher than that among populations of geographical regions and subpopulations derived from STRUCTURE. Human activities and the natural outcrossing system of Coix lacryma-jobi L. may have a great influence on its distribution, genetic diversity, and population structure. Our study provides useful information for local breeding programs of Coix lacryma-jobi L. as well.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...