Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 2082, 2024 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-38267514

RESUMEN

The recent scarcity of fishmeal and other resources means that studies on the intrinsic mechanisms of nutrients in the growth and development of aquatic animals at the molecular level have received widespread attention. The target of rapamycin (TOR) pathway has been reported to receive signals from nutrients and environmental stresses, and regulates cellular anabolism and catabolism to achieve precise regulation of cell growth and physiological activities. In this study, we cloned and characterized the full-length cDNA sequence of the TOR gene of Macrobrachium rosenbergii (MrTOR). MrTOR was expressed in all tissues, with higher expression in heart and muscle tissues. In situ hybridization also indicated that MrTOR was expressed in muscle, mainly around the nucleus. RNA interference decreased the expression levels of MrTOR and downstream protein synthesis-related genes (S6K, eIF4E, and eIF4B) (P < 0.05) and the expression and enzyme activity of the lipid synthesis-related enzyme, fatty acid synthase (FAS), and increased enzyme activity of the lipolysis-related enzyme, lipase (LPS). In addition, amino acid injection significantly increased the transcript levels of MrTOR and downstream related genes (S6K, eIF4E, eIF4B, and FAS), as well as triglyceride and total cholesterol tissue levels and FAS activity. Starvation significantly increased transcript levels and enzyme activities of adenylate-activated protein kinase and LPS and decreased transcript levels and enzyme activities of FAS, as well as transcript levels of MrTOR and its downstream genes (P < 0.05), whereas amino acid injection alleviated the starvation-induced decreases in transcript levels of these genes. These results suggested that arginine and leucine activated the TOR signaling pathway, promoted protein and lipid syntheses, and alleviated the pathway changes induced by starvation.


Asunto(s)
Proteínas Musculares , Palaemonidae , Animales , Palaemonidae/genética , Factor 4E Eucariótico de Iniciación , Lipopolisacáridos , Ácido Graso Sintasas , Adenilato Quinasa , Arginina
2.
Toxics ; 11(12)2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-38133423

RESUMEN

The wild population resources of Coreius guichenoti have sharply declined in recent decades, and any negative factors may have a significant impact on their survival. In this study, the enzymatic stress responses of C. guichenoti to 25 and 48 µm polyethylene fragments were explored for the first time. This was achieved by evaluating the changes in physiological and biochemical indicators of the species in response to the environmental stimuli of microplastics. In this study, we observed an early stress response in the external tissues of C. guichenoti following exposure to microplastics. The TP content in skin and muscle and the MDA content in skin, gill and muscle initially showed a significant increase. The skin, gill, and muscle exhibited greater stress responses to M5 particles, whereas M3 particles caused a greater response in the intestine and especially the liver. After the removal of microplastic exposure, the stress state of the C. guichenoti would be alleviated in a short period, but it could not fully recover to the pre-exposure level. In summary, microplastics pose a significant threat to C. guichenoti. While their negative effects can be alleviated by the removal of microplastics exposure, full recovery does not occur in a short period. Continuous monitoring of microplastics in natural waters and targeted aquatic ecological restoration are essential to ensure the normal growth and reproduction of the wild population of C. guichenoti.

3.
Fish Shellfish Immunol ; 142: 109150, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37838208

RESUMEN

Slc2a6 is a member of the slc2 family (solute carrier 2 family) and previous reports have indicated its involvement in the inflammatory response. Slc2a6 is regulated by the NF-ĸB signaling pathway. This study investigated the differential expression of slc2a6 in the early embryonic development of Japanese flounder, revealing that the early gastrula stage had the highest level of slc2a6 expression. Moreover, slc2a6 expression was increased in vitro after stimulation by lymphocystis disease virus (LCDV), and in vivo experiments also showed significantly elevated levels in the spleen and muscle tissues following LCDV stimulation. Subcellular localization revealed that Slc2a6 was expressed in both the nucleus and cytoplasm of cells. The pcDNA3.1-slc2a6 overexpression plasmid was successfully constructed; the si-slc2a6 interfering strand was screened and samples were collected. The expression of NF-ĸB signaling pathway-related genes il-1ß, il-6, nf-ĸb, and tnf-α was evaluated in overexpressed, silenced, and LCDV-stimulated samples. The results showed that slc2a6 is involved in viral regulation in Japanese flounder by regulating innate immune responses.


Asunto(s)
Enfermedades de los Peces , Lenguado , Iridoviridae , Virosis , Animales , FN-kappa B/metabolismo , Bazo/metabolismo , Proteínas de Peces/genética , Proteínas de Peces/metabolismo
4.
Front Immunol ; 14: 1173184, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37215128

RESUMEN

Mussel cell culture is a challenging problem and serum serves a crucial biological role in cell culture as an autologous supply and an immunizing agent. In this study, the biology (calcium ions, total protein, pH, and osmotic pressure) of fetal bovine serum (FBS) and Hyriopsis cumingii serum (HCS) was investigated, and the development of Hyriopsis cumingii (H. cumingii) mantle cells in HCS and FBS systems was examined. The results showed that total protein, calcium ions, and osmotic pressure varied significantly (p<0.05). The activity of mantle cells was superior in the HCS culture system to that in the FBS culture system. The label-free technique was used to distinguish the two serum proteins to investigate the supportive effect of autologous serum on cell culture. These were examined for 109 unique proteins and 35 particular HCS proteins. Most differentially expressed proteins (DEPs) were involved in immune response, cell differentiation, and calcium ion binding. Furthermore, immune factors such as HSP, CALR, APOB, C3 were identified with significant differences. HSP was significantly more present in HCS than in FBS as an endogenous protective protein that regulates immune system function, cell differentiation, transport, and activity regulation. Parallel reaction monitoring (PRM) analysis was carried out to validate the expression levels of 19 DEPs, indicating high reliability of the proteomic results. This study reveals the important role of immune factors in mussel cell culture, providing a theoretical basis for explaining the applicability of autologous serum in cell culture. It is also helpful in improving the cell culture conditions of mussels.


Asunto(s)
Bivalvos , Unionidae , Animales , Calcio/metabolismo , Proteómica , Reproducibilidad de los Resultados , Unionidae/metabolismo , Agua Dulce , Factores Inmunológicos/metabolismo
6.
Biology (Basel) ; 12(3)2023 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-36979089

RESUMEN

In the present study, we investigated the function of thyroid hormones (TH) in visual remodeling during Japanese flounder (Paralichthys olivaceus) metamorphosis through cellular molecular biology experiments. Our results showed that the expression of the five opsin genes of the flounder were highest in eye tissue and varied with the metamorphosis process. The expression of rh1, sws2aß and lws was positively regulated by exogenous TH, but inhibited by thiourea (TU) compared to the control group. In addition, there was a significant increase in sws2aß and lws in the rescue experiments performed with TU-treated larvae (p < 0.05). Meanwhile, T3 levels in flounder larvae were increased by TH and decreased by TU. Based on the differences in the expression of the three isoforms of the thyroid hormone receptor (TR) (Trαa, Trαb and Trß), we further hypothesized that T3 may directly or indirectly regulate the expression of sws2aß through Trαa. This study demonstrates the regulatory role of TH in opsins during flounder metamorphosis and provides a basis for further investigation on the molecular mechanisms underlying the development of the retinal photoreceptor system in flounders.

7.
Artículo en Inglés | MEDLINE | ID: mdl-36736150

RESUMEN

To clarify the molecular mechanism of the black and yellow shell coloration, we performed a transcriptome analysis of whole tissue of Corbicula fluminea in Hongze Lake (Jiangsu Province, China). After assembly, 335,247 unigenes were obtained, and 136,804 unigenes were functionally identified using public databases (NR, GO, KEGG, eggnog, and Swissprot). 1567 differentially expressed genes (DEGs) were detected through pairwise comparisons, of which 941 DEGs were up-regulated and 626 were down-regulated in the black-shelled clam. We compared the DEGs between two clams and identified some coloration-related genes. Notably, the black-shelled clam was larger than the yellow-shelled. We speculated that higher digestion and anabolic ability of black-shelled clam might lead to this phenomenon. In contrast, the yellow-shelled clam appeared to be more sensitive to environmental stress. The metabolic energy of the yellow-shelled clam was depleted to maintain or recover from stress, and provide less energy for growth. In summary, our finding provides a theoretical basis for the molecular mechanism of pigmentation and the difference of somatotype in bivalve, as well as promotes the future breeding of more elite varieties.


Asunto(s)
Corbicula , Animales , Corbicula/genética , Transcriptoma , Color , Perfilación de la Expresión Génica , Pigmentación/genética
8.
Int J Mol Sci ; 25(1)2023 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-38203198

RESUMEN

The Japanese flounder (Paralichthys olivaceus) is a marine fish that undergoes a dramatic postembryonic metamorphosis, with the right eye shifting to the left and its lifestyle transitioning from planktonic to benthic. As the light environment of the habitat changes from bright to dim, its photoreceptor system also undergoes adaptive change. Growth differentiation factor 6a (Gdf6a) is a member of the BMP family, which plays a key role in regulating the dorsal-ventral pattern of the retina and photoreceptor fate, and the differentiation of different photoreceptors is also modulated by a thyroid hormone (TH) binding its receptor (TR). However, the relationship between gdf6a and TH and its role in the regulation of photoreceptors during flounder metamorphosis is still poorly understood. In this study, bioinformatics analysis showed that Gdf6a had a conserved TGFB structural domain and clusters with fishes. The expression analysis showed that the expression of gdf6a was highest in the eye tissue of adult flounder and tended to increase and then decrease during metamorphosis, reaching its highest levels at the peak of metamorphosis. Moreover, the expression of gdf6a increased in the early stages of metamorphosis after exogenous TH treatment, while it was inhibited after exogenous thiourea (a TH inhibitor, TU) treatment. To further investigate the targeting role of TH and gdf6a in the metamorphosis of flounder, the results of the Dual-Luciferase revealed that triiodothyronine (T3) may regulate the expression of gdf6a through TRß. In conclusion, we speculate that TH influences the development of cone photoreceptors during the metamorphosis of the flounder by regulating the expression of gdf6a.


Asunto(s)
Lenguado , Animales , Lenguado/genética , Hormonas Tiroideas/genética , Hormonas Tiroideas/farmacología , Triyodotironina , Antitiroideos , Retina
9.
Biology (Basel) ; 11(12)2022 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-36552207

RESUMEN

A new cell line Japanese flounder spleen (JFSP) derived from the spleen of Japanese flounder (Paralichthys olivaceus) was established and characterized in this study. The JFSP cells grew rapidly at 29 °C, and the optimum fetal bovine serum concentration in the L-15 medium was 15%. Cells were subcultured for more than 80 passages. The JFSP cells have a diploid chromosome number of 2n = 68, which differs from the chromosome number of normal diploid Japanese flounder. The established cells were susceptible to Bohle virus (BIV), Viral hemorrhagic septicemia virus (VHSV), Hirame rhabdovirus (HIRRV), Infectious hematopoietic necrosis virus (IHNV), and Lymphocystis disease virus (LCDV), as evidenced by varying degrees of cytopathic effects (CPE). Replication of the virus in JFSP cells was confirmed by qRT-PCR and transmission electron microscopy. In addition, the expression of four immune-related genes, TRAF3, IL-1ß, TNF-α, and TLR2, was differentially altered following viral infection. The results indicated that the cells underwent an antiviral immune response. JFSP cell line is an ideal tool in vitro for virology. The use of fish cell lines to study the immune genes and immune mechanism of fish and to clarify the immune mechanism of fish has important theoretical significance and practical application value for the fundamental prevention and treatment of fish diseases.

10.
Biology (Basel) ; 11(9)2022 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-36138849

RESUMEN

Insulin-like growth factor 1 (IGF1) plays an important regulatory role in the regulation of growth, differentiation, and anabolism in a variety of cells. In this study, the full-length cDNA of the IGF1 gene was cloned from Hyriopsis cumingii, named HcIGF1. The expression level of HcIGF1 in six tissues (adductor muscle, foot, hepatopancreas, gill, mantle, and gonad) was determined. In addition, the localization of HcIGF1 in the mantle was analyzed by in situ hybridization, and finally the function of HcIGF1 was explored by RNA interference and prokaryotic expression. The results showed that the amino acid sequence contained a typical IIGF structural domain. The phylogenetic tree showed that HcIGF1 clustered with other marine bivalve sequences. Quantitative real-time PCR and in situ hybridization analysis showed that HcIGF1 was expressed in all tissues. The highest expression was in the foot and the lowest was in the mantle. In the mantle tissue, the hybridization signal was mainly concentrated in the outer mantle. After RNA interference, the expression of IGF1 was found to be significantly decreased (p < 0.05), and its related genes IGF1R, AKT1, and cyclin D2 were downregulated, while MAPK1 were upregulated. The recombinant HcIGF1 protein was purified and its growth-promoting effect was investigated. The results showed that the recombinant HcIGF1 protein could significantly promote the proliferative activity of the mantle cells of mussels, with the best proliferative effect at 12.5 µg/mL. The results of this study provide a new method to solve the problem of weak proliferation of shellfish cells in vitro and lay the foundation for further understanding of the growth regulation mechanism of H. cumingii, as well as a better understanding of the physiological function of IGF1 in mollusks.

11.
Fish Shellfish Immunol ; 127: 788-796, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35798247

RESUMEN

In the process of production of freshwater pearl, implanted mantle pieces undergo a series of complex physiological and biochemical processes to form pearl sac, which produce pearl. This is a very important site of occurrence due to immune-induced biomineralization, while its molecular regulatory mechanism is still unclear. Here, we use proteomics to identify differentially expressed proteins (DEPs) of the mantle and pearl sac and examine the biomineralization and immune response of the pearl sac formation process in Hyriopsis cumingii. Using iTRAQ technology and bioinformatics analysis, we obtained DEP profiles between the mantle and pearl sac. A total of 1871 proteins were identified. Of these, 74 DEPs were found between the pearl sac and outer mantle, 112 DEPs between the pearl sac and inner mantle, and 124 DEPs between the outer and inner mantles. Bioinformatics analysis revealed that the screened biomineralization-related DEPs were mainly enriched in signaling pathways associated with calcium signaling, regulation of the actin cytoskeleton and protein processing in the endoplasmic reticulum, while the immune-related DEPs were mainly enriched in the Notch, Hippo, nuclear factor kappa-B (NF-κB), and transforming growth factor-ß (TGF-ß) signaling pathways. In addition, the expression of six biomineralization-related and four immune-related proteins were verified at the transcriptional level using quantitative real-time PCR. Our findings contribute to furthering the understanding of the mechanisms of pearl formation and immune response, and have long-term implications for future studies on the production of high-quality freshwater pearls and development of the freshwater pearl industry.


Asunto(s)
Bivalvos , Unionidae , Animales , Biomineralización , Bivalvos/metabolismo , Agua Dulce , Inmunidad Innata/genética , Proteómica
12.
Fish Shellfish Immunol ; 120: 142-154, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34808358

RESUMEN

Trim25 is a member of Tripartite Motif (TRIM) family. Previous studies report that trim25 modulates antiviral activity by activating RIG-I. In this study we explored the four alternative splicing (AS) variants X1-X4 of Japanese flounder trim25. The sequences of the AS variants were highly conserved. Expression levels of trim25 X1-X4 were increased after 12 h of poly I:C treatment in vitro. In vivo expression of X2-X4 in liver, kidney (except X2) and blood was significantly up-regulated in early stages of poly I:C treatment. Subcellular localization analysis showed that Trim25 X1-X4 were distributed in different cellular organelles. The recombinant vector pcDNA3.1-Trim25 X1-X4 were successfully overexpressed in Flounder cells and the samples were collected. Expression patterns of RIG-I pathway genes dhx58, traf6, traf2, nfkbia and il-8 were explored in vitro and in vivo after poly I:C treatment, as well as overexpressed samples. The findings of this study imply that AS variants of trim25 confer antiviral activity in Japanese flounder by modulating innate immune response.


Asunto(s)
Empalme Alternativo , Proteínas de Peces , Lenguado , Inmunidad Innata , Proteínas de Motivos Tripartitos/genética , Animales , Proteínas de Peces/genética , Lenguado/genética , Lenguado/inmunología , Poli I-C/farmacología
13.
Artículo en Inglés | MEDLINE | ID: mdl-33962104

RESUMEN

Long non-coding RNAs (lncRNAs) are gradually regarded as regulators in sex determination and gonad development of various animals. Medaka (Oryzias latipes) is an excellent reproductive research model with sex-determining genes. However, the regulation of gonadal lncRNAs on medaka reproductive development remains unknown. Here, 5317 lncRNAs were obtained from medaka ovary and testis by Illumina HiSeq4000, among which 177 lncRNAs were up-regulated and 120 lncRNAs were down-regulated in the testis compared to the ovary. In addition, 6904 cis-regulated target genes were predicted from 3099 lncRNAs. GO and KEGG enrichment analysis showed that these target genes were mainly involved in phosphorylation, metabolic, metabolism of xenobiotics by cytochrome P450, insulin secretion, and GnRH signaling pathways. Furthermore, six highly expressed lncRNAs were randomly selected to verify the sequencing data by quantitative real time PCR (qRT-PCR). Next, in situ hybridization revealed that one of the sex-biased lncRNA MSTRG.14827.1 was highly expressed in immature germ cells, indicating MSTRG.14827.1 may play a key role in gametogenesis. Taken together, this study provides emerging lncRNA libraries and opens new avenues for future investigation of lncRNAs in medaka.


Asunto(s)
Proteínas de Peces/genética , Perfilación de la Expresión Génica/métodos , Oryzias/genética , ARN Largo no Codificante/genética , Transcriptoma , Animales , Regulación del Desarrollo de la Expresión Génica , Gónadas/crecimiento & desarrollo , Gónadas/metabolismo , Oryzias/crecimiento & desarrollo
14.
Artículo en Inglés | MEDLINE | ID: mdl-33714082

RESUMEN

Circular RNAs (circRNAs) have been regarded as regulators in the biological processes of various species. However, there is no report about circRNAs in the gonads of model fish medaka (Oryzias latipes). In this study, 1157 and 1570 circRNAs were obtained in the ovary and testis by RNA-sequencing. The characteristics of circRNAs were explored in sequence length, exon composition, and chromosome position. 24 circRNAs were significantly up or down-regulated in the testis compared to the ovary, 9 of which were verified by qRT-PCR. Interestingly, circ452 was highly expressed in the testis while circ880 expression exhibited sexual dimorphism. In situ hybridization (ISH) revealed that circ452 and circ880 were expressed in meiotic germ cells, and circ880 was also abundant in spermatogonia. In addition, dual-luciferase reporter assay manifested that circ880 and Oldnd can combine with miR-375-3p. Overall, these results provide emerging circRNA libraries and open new avenues for future investigation of circRNAs in medaka.


Asunto(s)
MicroARNs/genética , Oryzias/genética , ARN Circular/genética , Animales , Regulación hacia Abajo , Femenino , Gónadas/metabolismo , Masculino , Ovario/metabolismo , Testículo/metabolismo , Transcriptoma , Regulación hacia Arriba
15.
Front Physiol ; 11: 754, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32848810

RESUMEN

The discus fish (Symphysodon aequifasciatus) is an ornamental fish that is well-known around the world. In artificial reproduction, they must be matched by one male and one female, whereas phenotype investigation indicated that there are no significant differences in appearance between males and females, which causes great difficulties in the mating during artificial reproduction. So, it is of great importance to establish artificial sex identification methods for the discus fish. The molecular mechanism of the sexual dimorphism of the discus fish was previously unknown. In this study, we constructed six cDNA libraries from three adult testes and three adult ovaries and performed RNA sequencing for identifying sex-biased candidate genes and microRNAs (miRNAs). A total of 50,082 non-redundant genes (unigenes) were identified, of which 18,570 unigenes were significantly overexpressed in testes, and 11,182 unigenes were significantly overexpressed in ovaries. A total of 551 miRNAs were identified, of which 47 miRNAs were differentially expressed between testes and ovaries. Eight differentially expressed unigenes, seven differentially expressed miRNAs and one non-differential miRNA were validated by quantitative real-time polymerase chain reaction. Twenty-four of these differentially expressed miRNAs and their 15 predicted target genes constituted 41 miRNA-mRNA interaction pairs, and some of vital sex-related metabolic pathways were also identified. These results revealed these differentially expressed genes and miRNAs between ovary and testis might be involved in regulating gonadal development, sex determination, gametogenesis, and physiological function maintenance, and there are complex regulatory networks between genes and miRNAs. It can help us understand the molecular mechanism of the sexual dimorphism and obtain a high-efficiency sex identification method in the artificial reproduction process of the discus fish.

16.
Front Physiol ; 11: 244, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32300306

RESUMEN

PDE6H is a cone cell-specific inhibitory subunit that plays a critical role in the adaptation of the photosensitive system to bright and dark phases of the light environment. Thyroid hormone (TH) is one of the most important factors that control development and metabolism in animals, composed mainly of triiodothyronine (T3), and thyroxine (T4). TH also plays a key role in the metamorphosis of the flounder (Paralichthys olivaceus), wherein exogenous TH can accelerate the behavioral changes of larvae from the pelagic to benthic type accompanying changes in the light environment from bright to dark. In this study, transcriptional analysis showed that pde6h is expressed in adult eye, that its expression peaks at the climax of metamorphosis, and that it can be significantly up-regulated to the highest level by exogenous T4 in the early stages of metamorphosis but is inhibited by thiourea (TU). The rescue experiment showed that metamorphic inhibition of larvae and expression inhibition of pde6h gene in TU groups can be rescued by removing TU. Further, dual-luciferase reporter assay indicated the putative regulatory effect of TH on pde6h expression, mediated directly on the gene promoter by the TRαA gene. Together, we speculated that TH may control physiological adaptation of the photosensitive system to light changes during metamorphosis by acting directly on pde6h. This study can help us further study the physiological function of pde6h during flounder metamorphosis in the future.

17.
Fish Shellfish Immunol ; 93: 183-190, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31330254

RESUMEN

In mammals, a matricellular protein, thrombospondin 2 (Thbs2) has been reported to play important roles in modulating cell-matrix interactions, vascular integrity and thrombosis formation. However, the role of gene, thbs2 has not yet been studied in teleost. In the present study, this novel fish gene from Japanese flounder was cloned and its function in resistant to lymphocystis disease virus was elucidated. The Japanese flounder thbs2 encoded a 1176-amino acid protein with 91% identity to medaka. Amino acid sequence indicated that Japanese flounder Thbs2 contained 10 typical conserved domains. The thbs2 was expressed in all stages of embryo development, and in hatched larva stage, its expression was significantly higher than that in other stages (P < 0.05). The relative expression level of thbs2 was significantly higher in the head kidney, liver, blood, gill, and heart of the lymphocystis disease virus resistant fish than in sensitive fish (P < 0.05); and in muscle, this difference was at highly significant (P < 0.01). Additionally, the distribution of Thbs2 in tissue was evaluated by immunohistochemical staining. Subcellular localization analysis showed that Thbs2 was distributed throughout the cytoplasm of the cells. Taken together, our results provide new basic data for thbs2 function, especially its role in anti-lymphocystis disease virus immune response.


Asunto(s)
Enfermedades de los Peces/inmunología , Peces Planos/genética , Peces Planos/inmunología , Regulación de la Expresión Génica/inmunología , Inmunidad Innata/genética , Trombospondinas/genética , Trombospondinas/inmunología , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Infecciones por Virus ADN/inmunología , Infecciones por Virus ADN/veterinaria , Proteínas de Peces/química , Proteínas de Peces/genética , Proteínas de Peces/inmunología , Perfilación de la Expresión Génica/veterinaria , Iridoviridae/fisiología , Filogenia , Alineación de Secuencia/veterinaria , Trombospondinas/química
18.
Artículo en Inglés | MEDLINE | ID: mdl-30236454

RESUMEN

To examine Ca2+ absorption and transportation in the freshwater pearl oyster, Hyriopsis cumingii Lea, we studied the effects of different levels of either extracellular Ca2+ or 1,25(OH)2D3 on extracellular Ca2+ flux and intracellular Ca2+ concentrations in mantle cells using the non-invasive micro-test technique and laser scanning confocal microscopy. The inner and outer mantle (IM and OM) cells from mussels were cultured and then treated with different concentrations of Ca2+ and 1,25(OH)2D3. Extracellular Ca2+ flux and intracellular Ca2+ reserves were analyzed. The results showed that both extracellular Ca2+ and 1,25(OH)2D3 had significant effects on Ca2+ flux and reserves in mantle cells, especially in IM cells (P < .05). The increase in extracellular Ca2+ concentrations resulted in the conversion of extracellular Ca2+ flux into influx with an increase in flow rate (P < .05). The calcium ion fluorescence intensity of OM cells was higher than that of IM cells (P < .05). 1,25(OH)2D3 addition also significantly increased the influx rate of extracellular Ca2+, especially in IM cells, which were more sensitive to 1,25(OH)2D3 addition and had significantly higher Ca2+ influx rates than did OM cells (P < .05). Fluorescence intensities of intracellular Ca2+ first increased and then decreased with increasing 1,25(OH)2D3 levels. The study showed that IM cells play an important role in absorbing Ca2+ from the environment, while OM cells mainly function in the temporary storage and transportation of Ca2+ in the body. The current results suggested that high levels of extracellular Ca2+ (1.25 mM) or 1,25(OH)2D3 (over 100 IU/L) were favorable for Ca2+ uptake and maintenance in the body.


Asunto(s)
Absorción Fisiológica , Exoesqueleto/metabolismo , Calcitriol/metabolismo , Señalización del Calcio , Calcio/metabolismo , Pinctada/fisiología , Exoesqueleto/citología , Animales , Acuicultura , Transporte Biológico , Células Cultivadas , China , Colorantes Fluorescentes/química , Electrodos de Iones Selectos , Cinética , Microscopía Confocal , Pinctada/crecimiento & desarrollo , Reproducibilidad de los Resultados
19.
Fish Physiol Biochem ; 45(1): 299-309, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30242698

RESUMEN

Thyroid hormone (TH) is essential for Paralichthys olivaceus metamorphosis. Exogenous TH treatment induces premature metamorphosis in P. olivaceus larvae and a series of studies have been conducted to identify thyroid hormone-regulated functional genes and microRNAs involved in the metamorphosis of P. olivaceus; however, the proteins involved in this process remain to be fully clarified. In this study, the differential proteomic responses of P. olivaceus larvae to exogenous TH treatment were examined using tandem mass tags (TMT) for quantitation labeling followed by liquid chromatography tandem mass spectrometry (LC-MS/MS). The expression levels of 629 cellular proteins were identified to be significantly affected by TH treatment. The reliability of our TMT-labeled LC-MS/MS analysis was verified by examining the mRNA and protein levels of four selected proteins using quantitative real-time reverse-transcription PCR and western blot analyses. The possible biological significance of these proteins was further investigated by Gene Ontology (GO) enrichment, Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment, and protein-protein interaction analyses. Notably, we identified and described five groups of proteins involved in different important life events that were significantly regulated by exogenous TH treatment. Our study provides an improved understanding of the molecular mechanisms by which TH regulates the metamorphosis of P. olivaceus.


Asunto(s)
Lenguado/crecimiento & desarrollo , Metamorfosis Biológica/efectos de los fármacos , Proteómica , Hormonas Tiroideas/farmacología , Tiroxina/farmacología , Animales , Biología Computacional , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Hormonas Tiroideas/administración & dosificación , Tiroxina/administración & dosificación , Transcriptoma
20.
Fish Physiol Biochem ; 44(2): 451-463, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29218439

RESUMEN

Heterochronic lin-28 is a conserved RNA-binding protein that plays a key role in the timing of developmental events in organisms. As a crucial heterochronic gene, the protein controls developmental events of the second of four larval stages in Caenorhabditi elegans. Heterochronic let-7 miRNAs are often present in various species and highly conserved in sequence and biological function and are required for various biological processes. Previous studies showed that ten let-7 miRNAs were identified in the Japanese flounder (Paralichthys olivaceus) and that they were primarily expressed during metamorphosis. In this study, we clone and characterize the lin-28a gene from P. olivaceus and exhibit its dynamic expression pattern at different developmental stages and various adult tissues. The results show that the P. olivaceus lin-28a gene has high sequence similarity with other species and is highly expressed in the embryonic stage but weakly expressed in the larval stage. In addition, lin-28a overexpression causes cell proliferation and significantly promotes the levels of pre-let-7a and pre-let-7d while markedly depressing let-7a and let-7d expression in FEC (Flounder Embryonic Cell), which indicate that lin-28 possibly blocks the maturation of let-7 miRNAs. Additionally, lin-28a is identified as a target gene of let-7 miRNAs, and let-7 miRNAs directly regulate lin-28a expression by targeting its 3' UTR. Taken together, lin-28a along with let-7 miRNA participates in a lin-28/let-7 axis pathway that regulates cell division and timing of embryonic and metamorphic events in P. olivaceus.


Asunto(s)
Proteínas de Peces/metabolismo , Lenguado/crecimiento & desarrollo , Lenguado/genética , Regulación del Desarrollo de la Expresión Génica , MicroARNs/genética , Proteínas de Unión al ARN/metabolismo , Secuencia de Aminoácidos , Animales , Proliferación Celular , Embrión no Mamífero/citología , Embrión no Mamífero/metabolismo , Proteínas de Peces/genética , Lenguado/metabolismo , Metamorfosis Biológica , Filogenia , Proteínas de Unión al ARN/genética , Homología de Secuencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA