Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
2.
Cell Rep Med ; : 101534, 2024 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-38670100

RESUMEN

Thalamocortical (TC) circuits are essential for sensory information processing. Clinical and preclinical studies of autism spectrum disorders (ASDs) have highlighted abnormal thalamic development and TC circuit dysfunction. However, mechanistic understanding of how TC dysfunction contributes to behavioral abnormalities in ASDs is limited. Here, our study on a Shank3 mouse model of ASD reveals TC neuron hyperexcitability with excessive burst firing and a temporal mismatch relationship with slow cortical rhythms during sleep. These TC electrophysiological alterations and the consequent sensory hypersensitivity and sleep fragmentation in Shank3 mutant mice are causally linked to HCN2 channelopathy. Restoring HCN2 function early in postnatal development via a viral approach or lamotrigine (LTG) ameliorates sensory and sleep problems. A retrospective case series also supports beneficial effects of LTG treatment on sensory behavior in ASD patients. Our study identifies a clinically relevant circuit mechanism and proposes a targeted molecular intervention for ASD-related behavioral impairments.

3.
Neuron ; 112(3): 441-457.e6, 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-37992714

RESUMEN

Social isolation is a risk factor for multiple mood disorders. Specifically, social isolation can remodel the brain, causing behavioral abnormalities, including sociability impairments. Here, we investigated social behavior impairment in mice following chronic social isolation stress (CSIS) and conducted a screening of susceptible brain regions using functional readouts. CSIS enhanced synaptic inhibition in the anterior cingulate cortex (ACC), particularly at inhibitory synapses of cholecystokinin (CCK)-expressing interneurons. This enhanced synaptic inhibition in the ACC was characterized by CSIS-induced loss of presynaptic cannabinoid type-1 receptors (CB1Rs), resulting in excessive axonal calcium influx. Activation of CCK-expressing interneurons or conditional knockdown of CB1R expression in CCK-expressing interneurons specifically reproduced social impairment. In contrast, optogenetic activation of CB1R or administration of CB1R agonists restored sociability in CSIS mice. These results suggest that the CB1R may be an effective therapeutic target for preventing CSIS-induced social impairments by restoring synaptic inhibition in the ACC.


Asunto(s)
Cannabinoides , Giro del Cíngulo , Animales , Masculino , Ratones , Cannabinoides/metabolismo , Cannabinoides/farmacología , Giro del Cíngulo/metabolismo , Interneuronas/fisiología , Receptor Cannabinoide CB1/genética , Receptor Cannabinoide CB1/metabolismo , Aislamiento Social , Sinapsis/fisiología
4.
Cell ; 186(1): 209-229.e26, 2023 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-36608654

RESUMEN

Transcription factors (TFs) regulate gene programs, thereby controlling diverse cellular processes and cell states. To comprehensively understand TFs and the programs they control, we created a barcoded library of all annotated human TF splice isoforms (>3,500) and applied it to build a TF Atlas charting expression profiles of human embryonic stem cells (hESCs) overexpressing each TF at single-cell resolution. We mapped TF-induced expression profiles to reference cell types and validated candidate TFs for generation of diverse cell types, spanning all three germ layers and trophoblasts. Targeted screens with subsets of the library allowed us to create a tailored cellular disease model and integrate mRNA expression and chromatin accessibility data to identify downstream regulators. Finally, we characterized the effects of combinatorial TF overexpression by developing and validating a strategy for predicting combinations of TFs that produce target expression profiles matching reference cell types to accelerate cellular engineering efforts.


Asunto(s)
Diferenciación Celular , Factores de Transcripción , Humanos , Cromatina , Regulación de la Expresión Génica , Células Madre Embrionarias Humanas/metabolismo , Factores de Transcripción/metabolismo , Atlas como Asunto
5.
Sci Adv ; 8(49): eade1136, 2022 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-36475786

RESUMEN

Ionic conductivity and membrane capacitance are two foundational parameters that govern neuron excitability. Conventional optogenetics has emerged as a powerful tool to temporarily manipulate membrane ionic conductivity in intact biological systems. However, no analogous method exists for precisely manipulating cell membrane capacitance to enable long-lasting modulation of neuronal excitability. Genetically targetable chemical assembly of conductive and insulating polymers can modulate cell membrane capacitance, but further development of this technique has been hindered by poor spatiotemporal control of the polymer deposition and cytotoxicity from the widely diffused peroxide. We address these issues by harnessing genetically targetable photosensitizer proteins to assemble electrically functional polymers in neurons with precise spatiotemporal control. Using whole-cell patch-clamp recordings, we demonstrate that this optogenetic polymerization can achieve stepwise modulation of both neuron membrane capacitance and intrinsic excitability. Furthermore, cytotoxicity can be limited by controlling light exposure, demonstrating a promising new method for precisely modulating cell excitability.

7.
Dev Biol ; 468(1-2): 93-100, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-32976839

RESUMEN

Fragile X mental retardation 1 (FMR1) encodes the RNA binding protein FMRP. Loss of FMRP drives Fragile X syndrome (FXS), the leading inherited cause of intellectual disability and a leading monogenic cause of autism. While cortical hyperexcitability is a hallmark of FXS, the reported phenotypes and underlying mechanisms, including alterations in synaptic transmission and ion channel properties, are heterogeneous and at times contradictory. Here, we report the generation of new isogenic FMR1y/+ and FMR1y/- human pluripotent stem cell (hPSC) lines using CRISPR-Cas9 to facilitate the study of how complete FMRP loss, independent of genetic background, drives molecular and cellular alterations relevant for FXS. After differentiating these stem cell tools into excitatory neurons, we systematically assessed the impact of FMRP loss on intrinsic membrane and synaptic properties over time. Using whole-cell patch clamp analyses, we found that FMR1y/- neurons overall showed an increased intrinsic membrane excitability compared to age-matched FMR1y/+ controls, with no discernable alternations in synaptic transmission. Surprisingly, longitudinal analyses of cell intrinsic defects revealed that a majority of significant changes emerged early following in vitro differentiation and some were not stable over time. Collectively, this study provides a new isogenic hPSC model which can be further leveraged by the scientific community to investigate basic mechanisms of FMR1 gene function relevant for FXS. Moreover, our results suggest that precocious changes in the intrinsic membrane properties during early developmental could be a critical cellular pathology ultimately contributing to cortical hyperexcitability in FXS.


Asunto(s)
Diferenciación Celular , Membrana Celular/metabolismo , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Células Madre Embrionarias Humanas/metabolismo , Potenciales de la Membrana , Neuronas/metabolismo , Transmisión Sináptica , Línea Celular , Membrana Celular/genética , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , Células Madre Embrionarias Humanas/citología , Humanos
8.
Nat Neurosci ; 23(12): 1629-1636, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32807948

RESUMEN

Recent success in identifying gene-regulatory elements in the context of recombinant adeno-associated virus vectors has enabled cell-type-restricted gene expression. However, within the cerebral cortex these tools are largely limited to broad classes of neurons. To overcome this limitation, we developed a strategy that led to the identification of multiple new enhancers to target functionally distinct neuronal subtypes. By investigating the regulatory landscape of the disease gene Scn1a, we discovered enhancers selective for parvalbumin (PV) and vasoactive intestinal peptide-expressing interneurons. Demonstrating the functional utility of these elements, we show that the PV-specific enhancer allowed for the selective targeting and manipulation of these neurons across vertebrate species, including humans. Finally, we demonstrate that our selection method is generalizable and characterizes additional PV-specific enhancers with exquisite specificity within distinct brain regions. Altogether, these viral tools can be used for cell-type-specific circuit manipulation and hold considerable promise for use in therapeutic interventions.


Asunto(s)
Dependovirus/genética , Vectores Genéticos/genética , Interneuronas/fisiología , Animales , Callithrix , Corteza Cerebral/citología , Femenino , Humanos , Macaca mulatta , Ratones , Ratones Endogámicos C57BL , Canal de Sodio Activado por Voltaje NAV1.1/genética , Neuronas , Parvalbúminas/fisiología , Ratas , Ratas Sprague-Dawley , Especificidad de la Especie , Péptido Intestinal Vasoactivo/fisiología
10.
Nature ; 583(7818): 819-824, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32699411

RESUMEN

The thalamic reticular nucleus (TRN), the major source of thalamic inhibition, regulates thalamocortical interactions that are critical for sensory processing, attention and cognition1-5. TRN dysfunction has been linked to sensory abnormality, attention deficit and sleep disturbance across multiple neurodevelopmental disorders6-9. However, little is known about the organizational principles that underlie its divergent functions. Here we performed an integrative study linking single-cell molecular and electrophysiological features of the mouse TRN to connectivity and systems-level function. We found that cellular heterogeneity in the TRN is characterized by a transcriptomic gradient of two negatively correlated gene-expression profiles, each containing hundreds of genes. Neurons in the extremes of this transcriptomic gradient express mutually exclusive markers, exhibit core or shell-like anatomical structure and have distinct electrophysiological properties. The two TRN subpopulations make differential connections with the functionally distinct first-order and higher-order thalamic nuclei to form molecularly defined TRN-thalamus subnetworks. Selective perturbation of the two subnetworks in vivo revealed their differential role in regulating sleep. In sum, our study provides a comprehensive atlas of TRN neurons at single-cell resolution and links molecularly defined subnetworks to the functional organization of thalamocortical circuits.


Asunto(s)
Redes Reguladoras de Genes , Núcleos Talámicos/citología , Núcleos Talámicos/metabolismo , Animales , Análisis por Conglomerados , Femenino , Perfilación de la Expresión Génica , Hibridación Fluorescente in Situ , Metaloendopeptidasas/metabolismo , Ratones , Vías Nerviosas , Neuronas/metabolismo , Osteopontina/metabolismo , Técnicas de Placa-Clamp , RNA-Seq , Análisis de la Célula Individual , Sueño/genética , Sueño/fisiología , Núcleos Talámicos/fisiología , Transcriptoma
11.
Neuron ; 107(1): 38-51.e8, 2020 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-32353253

RESUMEN

Optogenetics is among the most widely employed techniques to manipulate neuronal activity. However, a major drawback is the need for invasive implantation of optical fibers. To develop a minimally invasive optogenetic method that overcomes this challenge, we engineered a new step-function opsin with ultra-high light sensitivity (SOUL). We show that SOUL can activate neurons located in deep mouse brain regions via transcranial optical stimulation and elicit behavioral changes in SOUL knock-in mice. Moreover, SOUL can be used to modulate neuronal spiking and induce oscillations reversibly in macaque cortex via optical stimulation from outside the dura. By enabling external light delivery, our new opsin offers a minimally invasive tool for manipulating neuronal activity in rodent and primate models with fewer limitations on the depth and size of target brain regions and may further facilitate the development of minimally invasive optogenetic tools for the treatment of neurological disorders.


Asunto(s)
Opsinas , Optogenética/métodos , Animales , Encéfalo/fisiología , Macaca , Ratones , Modelos Animales , Neuronas/fisiología
12.
Transl Psychiatry ; 10(1): 29, 2020 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-32066662

RESUMEN

CACNA1I, a schizophrenia risk gene, encodes a subtype of voltage-gated T-type calcium channel CaV3.3. We previously reported that a patient-derived missense de novo mutation (R1346H) of CACNA1I impaired CaV3.3 channel function. Here, we generated CaV3.3-RH knock-in animals, along with mice lacking CaV3.3, to investigate the biological impact of R1346H (RH) variation. We found that RH mutation altered cellular excitability in the thalamic reticular nucleus (TRN), where CaV3.3 is abundantly expressed. Moreover, RH mutation produced marked deficits in sleep spindle occurrence and morphology throughout non-rapid eye movement (NREM) sleep, while CaV3.3 haploinsufficiency gave rise to largely normal spindles. Therefore, mice harboring the RH mutation provide a patient derived genetic model not only to dissect the spindle biology but also to evaluate the effects of pharmacological reagents in normalizing sleep spindle deficits. Importantly, our analyses highlighted the significance of characterizing individual spindles and strengthen the inferences we can make across species over sleep spindles. In conclusion, this study established a translational link between a genetic allele and spindle deficits during NREM observed in schizophrenia patients, representing a key step toward testing the hypothesis that normalizing spindles may be beneficial for schizophrenia patients.


Asunto(s)
Canales de Calcio Tipo T , Esquizofrenia , Animales , Electroencefalografía , Humanos , Ratones , Esquizofrenia/genética , Sueño , Sueño REM
13.
Eur J Paediatr Neurol ; 24: 129-133, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31928904

RESUMEN

The four voltage-gated sodium channels SCN1/2/3/8A have been associated with heterogeneous types of developmental disorders, each presenting with disease specific temporal and cell type specific gene expression. Using single-cell RNA sequencing transcriptomic data from humans and mice, we observe that SCN1A is predominantly expressed in inhibitory neurons. In contrast, SCN2/3/8A are profoundly expressed in excitatory neurons with SCN2/3A starting prenatally, followed by SCN1/8A neonatally. In contrast to previous observations from low resolution RNA screens, we observe that all four genes are expressed in both excitatory and inhibitory neurons, however, exhibit differential expression strength. These findings provide molecular evidence, at single-cell resolution, to support the hypothesis that the excitatory/inhibitory (E/I) neuronal expression ratios of sodium channels are important regulatory mechanisms underlying brain homeostasis and neurological diseases. Modulating the E/I expression balance within cell types of sodium channels could serve as a potential strategy to develop targeted treatment for NaV-associated neuronal developmental disorders.


Asunto(s)
Encéfalo/metabolismo , Discapacidades del Desarrollo/metabolismo , Neuronas/metabolismo , Canales de Sodio Activados por Voltaje/metabolismo , Animales , Discapacidades del Desarrollo/genética , Humanos , Ratones , Canales de Sodio Activados por Voltaje/genética
14.
Nature ; 574(7778): 413-417, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31597963

RESUMEN

A longstanding goal in neuroscience has been to image membrane voltage across a population of individual neurons in an awake, behaving mammal. Here we describe a genetically encoded fluorescent voltage indicator, SomArchon, which exhibits millisecond response times and is compatible with optogenetic control, and which increases the sensitivity, signal-to-noise ratio, and number of neurons observable several-fold over previously published fully genetically encoded reagents1-8. Under conventional one-photon microscopy, SomArchon enables the routine population analysis of around 13 neurons at once, in multiple brain regions (cortex, hippocampus, and striatum) of head-fixed, awake, behaving mice. Using SomArchon, we detected both positive and negative responses of striatal neurons during movement, as previously reported by electrophysiology but not easily detected using modern calcium imaging techniques9-11, highlighting the power of voltage imaging to reveal bidirectional modulation. We also examined how spikes relate to the subthreshold theta oscillations of individual hippocampal neurons, with SomArchon showing that the spikes of individual neurons are more phase-locked to their own subthreshold theta oscillations than to local field potential theta oscillations. Thus, SomArchon reports both spikes and subthreshold voltage dynamics in awake, behaving mice.


Asunto(s)
Biomarcadores Ambientales , Hipocampo/citología , Neuronas/fisiología , Imagen Óptica/métodos , Vigilia/fisiología , Potenciales de Acción/fisiología , Animales , Biomarcadores Ambientales/genética , Hipocampo/diagnóstico por imagen , Ratones , Optogenética
15.
Nat Neurosci ; 22(8): 1223-1234, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31332372

RESUMEN

Social deficit is a core clinical feature of autism spectrum disorder (ASD) but the underlying neural mechanisms remain largely unclear. We demonstrate that structural and functional impairments occur in glutamatergic synapses in the pyramidal neurons of the anterior cingulate cortex (ACC) in mice with a mutation in Shank3, a high-confidence candidate ASD gene. Conditional knockout of Shank3 in the ACC was sufficient to generate excitatory synaptic dysfunction and social interaction deficits, whereas selective enhancement of ACC activity, restoration of SHANK3 expression in the ACC, or systemic administration of an α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor-positive modulator improved social behavior in Shank3 mutant mice. Our findings provide direct evidence for the notion that the ACC has a role in the regulation of social behavior in mice and indicate that ACC dysfunction may be involved in social impairments in ASD.


Asunto(s)
Trastorno del Espectro Autista/genética , Trastorno del Espectro Autista/patología , Giro del Cíngulo/patología , Proteínas del Tejido Nervioso/genética , Conducta Social , Animales , Dioxoles/farmacología , Modelos Animales de Enfermedad , Ácido Glutámico , Aseo Animal , Giro del Cíngulo/fisiopatología , Relaciones Interpersonales , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas de Microfilamentos , Mutación/genética , Optogenética , Piperidinas/farmacología , Células Piramidales/patología , Receptores AMPA/agonistas , Sinapsis/patología
16.
Cell Rep ; 23(8): 2509-2523, 2018 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-29791859

RESUMEN

Transcription factor programming of pluripotent stem cells (PSCs) has emerged as an approach to generate human neurons for disease modeling. However, programming schemes produce a variety of cell types, and those neurons that are made often retain an immature phenotype, which limits their utility in modeling neuronal processes, including synaptic transmission. We report that combining NGN2 programming with SMAD and WNT inhibition generates human patterned induced neurons (hpiNs). Single-cell analyses showed that hpiN cultures contained cells along a developmental continuum, ranging from poorly differentiated neuronal progenitors to well-differentiated, excitatory glutamatergic neurons. The most differentiated neurons could be identified using a CAMK2A::GFP reporter gene and exhibited greater functionality, including NMDAR-mediated synaptic transmission. We conclude that utilizing single-cell and reporter gene approaches for selecting successfully programmed cells for study will greatly enhance the utility of hpiNs and other programmed neuronal populations in the modeling of nervous system disorders.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Tipificación del Cuerpo , Proteínas del Tejido Nervioso/metabolismo , Neuronas/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Transmisión Sináptica , Adulto , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Diferenciación Celular , Células Cultivadas , Feto/citología , Regulación de la Expresión Génica , Humanos , Neuronas/citología , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/metabolismo , Receptores AMPA/metabolismo , Receptores de Glutamato/metabolismo , Proteínas Smad/metabolismo , Sinapsis/metabolismo , Factores de Tiempo , Transcripción Genética , Proteínas Wnt/metabolismo
17.
J Clin Invest ; 127(5): 1978-1990, 2017 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-28414301

RESUMEN

The postsynaptic scaffolding protein SH3 and multiple ankyrin repeat domains 3 (SHANK3) is critical for the development and function of glutamatergic synapses. Disruption of the SHANK3-encoding gene has been strongly implicated as a monogenic cause of autism, and Shank3 mutant mice show repetitive grooming and social interaction deficits. Although basal ganglia dysfunction has been proposed to underlie repetitive behaviors, few studies have provided direct evidence to support this notion and the exact cellular mechanisms remain largely unknown. Here, we utilized the Shank3B mutant mouse model of autism to investigate how Shank3 mutation may differentially affect striatonigral (direct pathway) and striatopallidal (indirect pathway) medium spiny neurons (MSNs) and its relevance to repetitive grooming behavior in Shank3B mutant mice. We found that Shank3 deletion preferentially affects synapses onto striatopallidal MSNs. Striatopallidal MSNs showed profound defects, including alterations in synaptic transmission, synaptic plasticity, and spine density. Importantly, the repetitive grooming behavior was rescued by selectively enhancing the striatopallidal MSN activity via a Gq-coupled human M3 muscarinic receptor (hM3Dq), a type of designer receptors exclusively activated by designer drugs (DREADD). Our findings directly demonstrate the existence of distinct changes between 2 striatal pathways in a mouse model of autism and indicate that the indirect striatal pathway disruption might play a causative role in repetitive behavior of Shank3B mutant mice.


Asunto(s)
Trastorno Autístico , Cuerpo Estriado , Proteínas del Tejido Nervioso , Plasticidad Neuronal/genética , Sustancia Negra , Transmisión Sináptica/genética , Animales , Trastorno Autístico/genética , Trastorno Autístico/metabolismo , Trastorno Autístico/fisiopatología , Cuerpo Estriado/metabolismo , Cuerpo Estriado/fisiopatología , Modelos Animales de Enfermedad , Humanos , Ratones , Ratones Noqueados , Proteínas de Microfilamentos , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Sustancia Negra/metabolismo , Sustancia Negra/fisiopatología
18.
Proc Natl Acad Sci U S A ; 113(46): E7287-E7296, 2016 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-27803317

RESUMEN

Rett syndrome (RTT) arises from loss-of-function mutations in methyl-CpG binding protein 2 gene (Mecp2), but fundamental aspects of its physiological mechanisms are unresolved. Here, by whole-cell recording of synaptic responses in MeCP2 mutant mice in vivo, we show that visually driven excitatory and inhibitory conductances are both reduced in cortical pyramidal neurons. The excitation-to-inhibition (E/I) ratio is increased in amplitude and prolonged in time course. These changes predict circuit-wide reductions in response reliability and selectivity of pyramidal neurons to visual stimuli, as confirmed by two-photon imaging. Targeted recordings reveal that parvalbumin-expressing (PV+) interneurons in mutant mice have reduced responses. PV-specific MeCP2 deletion alone recapitulates effects of global MeCP2 deletion on cortical circuits, including reduced pyramidal neuron responses and reduced response reliability and selectivity. Furthermore, MeCP2 mutant mice show reduced expression of the cation-chloride cotransporter KCC2 (K+/Cl- exporter) and a reduced KCC2/NKCC1 (Na+/K+/Cl- importer) ratio. Perforated patch recordings demonstrate that the reversal potential for GABA is more depolarized in mutant mice, but is restored by application of the NKCC1 inhibitor bumetanide. Treatment with recombinant human insulin-like growth factor-1 restores responses of PV+ and pyramidal neurons and increases KCC2 expression to normalize the KCC2/NKCC1 ratio. Thus, loss of MeCP2 in the brain alters both excitation and inhibition in brain circuits via multiple mechanisms. Loss of MeCP2 from a specific interneuron subtype contributes crucially to the cell-specific and circuit-wide deficits of RTT. The joint restoration of inhibition and excitation in cortical circuits is pivotal for functionally correcting the disorder.


Asunto(s)
Corteza Cerebral/fisiología , Interneuronas/fisiología , Células Piramidales/fisiología , Síndrome de Rett/fisiopatología , Animales , Modelos Animales de Enfermedad , Femenino , Factor I del Crecimiento Similar a la Insulina/farmacología , Interneuronas/efectos de los fármacos , Masculino , Proteína 2 de Unión a Metil-CpG/genética , Ratones Endogámicos C57BL , Ratones Noqueados , Parvalbúminas , Células Piramidales/efectos de los fármacos , Proteínas Recombinantes
19.
Elife ; 52016 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-27751234

RESUMEN

Multiple hypothalamic neuronal populations that regulate energy balance have been identified. Although hypothalamic glia exist in abundance and form intimate structural connections with neurons, their roles in energy homeostasis are less known. Here we show that selective Ca2+ activation of glia in the mouse arcuate nucleus (ARC) reversibly induces increased food intake while disruption of Ca2+ signaling pathway in ARC glia reduces food intake. The specific activation of ARC glia enhances the activity of agouti-related protein/neuropeptide Y (AgRP/NPY)-expressing neurons but induces no net response in pro-opiomelanocortin (POMC)-expressing neurons. ARC glial activation non-specifically depolarizes both AgRP/NPY and POMC neurons but a strong inhibitory input to POMC neurons balances the excitation. When AgRP/NPY neurons are inactivated, ARC glial activation fails to evoke any significant changes in food intake. Collectively, these results reveal an important role of ARC glia in the regulation of energy homeostasis through its interaction with distinct neuronal subtype-specific pathways.


Asunto(s)
Núcleo Arqueado del Hipotálamo/citología , Núcleo Arqueado del Hipotálamo/fisiología , Conducta Alimentaria , Proteína Ácida Fibrilar de la Glía/biosíntesis , Neuroglía/fisiología , Animales , Señalización del Calcio , Ratones
20.
Elife ; 52016 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-27156560

RESUMEN

The axolotl can regenerate multiple organs, including the brain. It remains, however, unclear whether neuronal diversity, intricate tissue architecture, and axonal connectivity can be regenerated; yet, this is critical for recovery of function and a central aim of cell replacement strategies in the mammalian central nervous system. Here, we demonstrate that, upon mechanical injury to the adult pallium, axolotls can regenerate several of the populations of neurons present before injury. Notably, regenerated neurons acquire functional electrophysiological traits and respond appropriately to afferent inputs. Despite the ability to regenerate specific, molecularly-defined neuronal subtypes, we also uncovered previously unappreciated limitations by showing that newborn neurons organize within altered tissue architecture and fail to re-establish the long-distance axonal tracts and circuit physiology present before injury. The data provide a direct demonstration that diverse, electrophysiologically functional neurons can be regenerated in axolotls, but challenge prior assumptions of functional brain repair in regenerative species.


Asunto(s)
Ambystoma mexicanum , Lesiones Encefálicas , Encéfalo/fisiología , Regeneración , Animales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA