Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Int J Biol Macromol ; 262(Pt 1): 129731, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38278394

RESUMEN

Human brain microvascular endothelial cells (hBMECs) are the main component cells of the blood-brain barrier (BBB) and play a crucial role in responding to viral infections to prevent the central nervous system (CNS) from viral invasion. Interferon-inducible transmembrane protein 1 (IFITM1) is a multifunctional membrane protein downstream of type-I interferon. In this study, we discovered that hIFITM1 expression was highly upregulated in hBMECs during Japanese encephalitis virus (JEV) infection. Depletion of hIFITM1 with CRISPR/Cas9 in hBMECs enhanced JEV replication, while overexpression of hIFITM1 restricted the viruses. Additionally, overexpression of hIFITM1 promoted the monolayer formation of hBMECs with a better integrity and a higher transendothelial electrical resistance (TEER), and reduced the penetration of JEV across the BBB. However, the function of hIFITM1 is governed by palmitoylation. Mutations of palmitoylation residues in conserved CD225 domain of hIFITM1 impaired its antiviral capacity. Moreover, mutants retained hIFITM1 in the cytoplasm and lessened its interaction with tight junction protein Occludin. Taken together, palmitoylation of hIFITM1 is essential for its antiviral activity in hBMECs, and more notably, for the maintenance of BBB homeostasis.


Asunto(s)
Virus de la Encefalitis Japonesa (Especie) , Encefalitis Japonesa , Humanos , Barrera Hematoencefálica/metabolismo , Virus de la Encefalitis Japonesa (Especie)/genética , Células Endoteliales/metabolismo , Lipoilación , Encefalitis Japonesa/genética , Antivirales/metabolismo , Interferones/metabolismo
2.
J Neuroinflammation ; 20(1): 216, 2023 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-37752509

RESUMEN

BACKGROUND: Japanese encephalitis virus (JEV) remains a predominant cause of Japanese encephalitis (JE) globally. Its infection is usually accompanied by disrupted blood‒brain barrier (BBB) integrity and central nervous system (CNS) inflammation in a poorly understood pathogenesis. Productive JEV infection in brain microvascular endothelial cells (BMECs) is considered the initial event of the virus in penetrating the BBB. Type I/III IFN and related factors have been described as negative regulators in CNS inflammation, whereas their role in JE remains ambiguous. METHODS: RNA-sequencing profiling (RNA-seq), real-time quantitative PCR, enzyme-linked immunosorbent assay, and Western blotting analysis were performed to analyze the gene and protein expression changes between mock- and JEV-infected hBMECs. Bioinformatic tools were used to cluster altered signaling pathway members during JEV infection. The shRNA-mediated immune factor-knockdown hBMECs and the in vitro transwell BBB model were utilized to explore the interrelation between immune factors, as well as between immune factors and BBB endothelial integrity. RESULTS: RNA-Seq data of JEV-infected hBMECs identified 417, 1256, and 2748 differentially expressed genes (DEGs) at 12, 36, and 72 h post-infection (hpi), respectively. The altered genes clustered into distinct pathways in gene ontology (GO) terms and KEGG pathway enrichment analysis, including host antiviral immune defense and endothelial cell leakage. Further investigation revealed that pattern-recognition receptors (PRRs, including TLR3, RIG-I, and MDA5) sensed JEV and initiated IRF/IFN signaling. IFNs triggered the expression of interferon-induced proteins with tetratricopeptide repeats (IFITs) via the JAK/STAT pathway. Distinct PRRs exert different functions in barrier homeostasis, while treatment with IFN (IFN-ß and IFN-λ1) in hBMECs stabilizes the endothelial barrier by alleviating exogenous destruction. Despite the complex interrelationship, IFITs are considered nonessential in the IFN-mediated maintenance of hBMEC barrier integrity. CONCLUSIONS: This research provided the first comprehensive description of the molecular mechanisms of host‒pathogen interplay in hBMECs responding to JEV invasion, in which type I/III IFN and related factors strongly correlated with regulating the hBMEC barrier and restricting JEV infection. This might help with developing an attractive therapeutic strategy in JE.


Asunto(s)
Virus de la Encefalitis Japonesa (Especie) , Virus de la Encefalitis Japonesa (Subgrupo) , Encefalitis Japonesa , Interferón Tipo I , Humanos , Encefalitis Japonesa/genética , Barrera Hematoencefálica , Interferón lambda , Células Endoteliales , Quinasas Janus , Factores de Transcripción STAT , Transducción de Señal , Inflamación
3.
Front Microbiol ; 13: 894356, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35847084

RESUMEN

The establishment of Japanese encephalitis virus (JEV) infection in brain microvascular endothelial cells (BMECs) is thought to be a critical step to induce viral encephalitis with compromised blood-brain barrier (BBB), and the mechanisms involved in this process are not completely understood. In this study, we found that epidermal growth factor receptor (EGFR) is related to JEV escape from interferon-related host innate immunity based on a STRING analysis of JEV-infected primary human brain microvascular endothelial cells (hBMECs) and mouse brain. At the early phase of the infection processes, JEV induced the phosphorylation of EGFR. In JEV-infected hBMECs, a rapid internalization of EGFR that co-localizes with the endosomal marker EEA1 occurred. Using specific inhibitors to block EGFR, reduced production of viral particles was observed. Similar results were also found in an EGFR-KO hBMEC cell line. Even though the process of viral infection in attachment and entry was not noticeably influenced, the induction of IFNs in EGFR-KO hBMECs was significantly increased, which may account for the decreased viral production. Further investigation demonstrated that EGFR downstream cascade ERK, but not STAT3, was involved in the antiviral effect of IFNs, and a lowered viral yield was observed by utilizing the specific inhibitor of ERK. Taken together, the results revealed that JEV induces EGFR activation, leading to a suppression of interferon signaling and promotion of viral replication, which could provide a potential target for future therapies for the JEV infection.

4.
J Gen Virol ; 100(4): 602-615, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30875282

RESUMEN

Canine distemper (CD) causes gastrointestinal and respiratory and/or neurological signs and results in high morbidity and mortality, remaining a threat to carnivores around the world. Live-attenuated vaccines have been widely used to reduce the number of CD outbreaks, but efforts are still needed to improve immune efficiency. Interleukin-7 (IL-7) has been reported to boost host immunity by recruiting follicle helper T (TFH) or germinal center (GC) B cells. Here, we constructed a recombinant canine distemper virus (rCDV) by reverse genetics and evaluated the properties of six intergenic sites for insertion of a foreign gene. We found that the P/M intergenic region was the optimal site to insert a foreign gene into the CDV genome. The effect of overexpressing IL-7 on rCDV immunogenicity was then evaluated in a mouse model. We found that mice immunized with rCDV-IL7 could not significantly enhance the maturation of dendritic cells (DCs) but significantly facilitated the generation of TFH cells, GC B cells and plasma cells (PCs), as well as the formation of GCs, consequently enhancing the production of CDV-specific neutralizing antibodies and total IgG. Together, these results suggested that the overexpression of IL-7 by rCDV could enhance humoral responses by activating the TFH-GC B-PC axis, which will help to improve vaccines for CD.


Asunto(s)
Virus del Moquillo Canino/inmunología , Moquillo/inmunología , Inmunidad Humoral/inmunología , Interleucina-7/inmunología , Animales , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Linfocitos B/inmunología , Chlorocebus aethiops , Perros , Femenino , Centro Germinal/inmunología , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos ICR , Linfocitos T Colaboradores-Inductores/inmunología , Vacunación/métodos , Vacunas Atenuadas/inmunología , Células Vero , Vacunas Virales/inmunología
5.
Microb Pathog ; 112: 243-253, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28966063

RESUMEN

Resistance to anti-tuberculosis drugs is a formidable obstacle to effective tuberculosis (TB) treatment and prevention globally. New forms of multidrug, extensive drug and total drug resistance Mycobacterium tuberculosis (Mtb) causing a serious threat to human as well as animal's population. Mtb shows diverse adaptability under stress conditions especially antibiotic treatment, however underlying physiological mechanism remained elusive. In present study, we investigated Mtb's response and adaptation with reference to gene expression during sub-lethal kanamycin exposure. Mtb were cultured under sub-lethal drug and control conditions, where half were sub-cultured every 3-days to observe serial adaptation under same conditions and the remaining were subjected to RNA-seq. We identified 98 up-regulated and 198 down-regulated responsive genes compared to control through differential analysis, of which Ra1750 and Ra3160 were the most responsive genes. In adaptive analysis, we found Ra1750, Ra3160, Ra3161, Ra3893 and Ra2492 up-regulation at early stage and gradually showed low expression levels at the later stages of drug exposure. The adaptive expression of Ra1750, Ra3160 and Ra3161 were further confirmed by real time qPCR. These results suggested that these genes contributed in Mtb's physiological adaptation during sub-lethal kanamycin exposure. Our findings may aid to edify these potential targets for drug development against drug resistance tuberculosis.


Asunto(s)
Perfilación de la Expresión Génica , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Kanamicina/farmacología , Mycobacterium tuberculosis/efectos de los fármacos , Mycobacterium tuberculosis/genética , Adaptación Fisiológica/genética , Animales , Farmacorresistencia Bacteriana/efectos de los fármacos , Farmacorresistencia Bacteriana/genética , Regulación Bacteriana de la Expresión Génica/genética , Genes Bacterianos/genética , Humanos , Pruebas de Sensibilidad Microbiana , Familia de Multigenes , Mutación , Tasa de Mutación , Mycobacterium tuberculosis/metabolismo , Mapas de Interacción de Proteínas , ARN Bacteriano/análisis , ARN Ribosómico 16S/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Análisis de Secuencia de ARN , Tuberculosis Resistente a Múltiples Medicamentos , Virulencia/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...