Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Sci Food Agric ; 104(7): 3865-3882, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38217341

RESUMEN

BACKGROUND: Soil is a key foundation of crop root growth. There are interactions between root system and soil in multiple ways. The present study aimed to further explore the response of root distribution and morphology to soil physical and chemical environment under maize (Zea mays L.) soybean (Glycine Max L. Merr.) relay strip intercropping (MS) An experiment was carried out aiming to examine the effects of nitrogen (N) applications and interspecific distances on root system and soil environment in MS. The two N application levels, referred to as no N application (NN) and conventional N application (CN), were paired with different interspecific distances: 30, 45 and 60 cm (MS30, MS45 and MS60) and 100 cm of monoculture maize and soybean (MM/SS100). RESULTS: The results demonstrated that MS45 increased the distribution of soil aggregates (> 2 mm) near the crop roots and maize soil nutrients status, which increased by 20.3% and 15.6%. Meanwhile, MS reduced soil bulk density, increased soil porosity and improved soil oxygen content. Optimization of the soil environment facilitated root growth. The MS45 achieved a better result on root distribution and morphology than the other configuration and also increased land productivity. CONCLUSION: Relay intercropped soybean with maize in interspecific row spacing of 45 cm, improved soil physicochemical environment, reshaped root architecture and optimized root spatial distribution of crops to achieve greater land productivity. © 2024 Society of Chemical Industry.


Asunto(s)
Agricultura , Suelo , Suelo/química , Agricultura/métodos , Glycine max , Zea mays , Nitrógeno/análisis
2.
BMC Plant Biol ; 23(1): 438, 2023 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-37726682

RESUMEN

Intercropping can obtain yield advantages, but the mechanism of yield advantages of maize-legume intercropping is still unclear. Then, we explored the effects of cropping systems and N input on yield advantages in a two-year experiment. Cropping systems included monoculture maize (Zea mays L.) (MM), monoculture soybean (Glycine max L. Merr.) (MS), monoculture peanut (Arachis hypogaea L.) (MP), maize-soybean substitutive relay intercropping (IMS), and maize-peanut substitutive strip intercropping (IMP). N input included without N (N0) and N addition (N1). Results showed that maize's leaf area index was 31.0% and 34.6% higher in IMS and IMP than in MM. The specific leaf weight and chlorophyll a (chl a) of maize were notably higher by 8.0% and 18.8% in IMS, 3.1%, and 18.6% in IMP compared with MM. Finally, N addition resulted in a higher thousand kernels weight of maize in IMS and IMP than that in MM. More dry matter accumulated and partitioned to the grain, maize's averaged partial land equivalent ratio and the net effect were 0.76 and 2.75 t ha-1 in IMS, 0.78 and 2.83 t ha-1 in IMP. The leaf area index and specific leaf weight of intercropped soybean were 16.8% and 26% higher than MS. Although soybean suffers from shade during coexistence, recovered growth strengthens leaf functional traits and increases dry matter accumulation. The averaged partial land equivalent ratio and the net effect of intercropped soybean were 0.76 and 0.47 t ha-1. The leaf area index and specific leaf weight of peanuts in IMP were 69.1% and 14.4% lower than in the MP. The chlorophyll a and chlorophyll b of peanut in MP were 17.0% and 24.4% higher than in IMP. A less dry matter was partitioned to the grain for intercropped peanut. The averaged pLER and NE of intercropped peanuts were 0.26 and -0.55 t ha-1. In conclusion, the strengthened leaf functional traits promote dry matter accumulation, maize-soybean relay intercropping obtained a win-win yield advantage, and maize-peanut strip intercropping achieved a trade-off yield advantage.


Asunto(s)
Fabaceae , Zea mays , Clorofila A , Verduras , Glycine max , Arachis , Hojas de la Planta , Grano Comestible
3.
BMC Plant Biol ; 23(1): 38, 2023 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-36646997

RESUMEN

Applying Biochar (BC) or biofertilizers (BF) are potential approaches to reduce the nitrogen input and mitigate soil degradation in the maize soybean relay strip intercropping system (IS). In 2019 and 2020, a two-factor experiment was carried out to examine the effects of BC and BF on soil productivity and yield production in IS. 4 N input levels (8.4, 22.5, 45 kg, and 67.5 kg ha - 1) referred to as N0, N1, N2, and N3 were paired with various organic treatments, including BC (150 kg ha - 1), BF (300 kg ha - 1), and without organic amendments (CK). The results demonstrated that, despite BF decreasing the biomass and N distribution into grains, BF performed better on improved soybean yield (5.2-8.5%) by increasing the accumulation of soybean biomass (7.2 ~ 11.6%) and N (7.7%). Even though BC and BF have a detrimental effect on soybean nitrogen fixation by reducing nodule number and weight, the values of soybean nitrogenase activity and nitrogen fixation potential in BF were higher than those in BC. Additionally, BF performs better at boosting the soil's nitrogen content and nitrate reductase and urease activity. BF increased the concentration of total N, soil organic matter, Olsen-phosphorus, and alkaline hydrolyzable N in the soil by 13.0, 17.1, 22.0, and 7.4%, respectively, compared to CK. Above all, applying BF combination with N2 (45 kg ha - 1 N) is a feasible strategy to raise crop grain output and keep soil productivity over the long term in IS.


Asunto(s)
Agricultura , Glycine max , Glycine max/metabolismo , Zea mays/metabolismo , Nitrógeno/metabolismo , Fertilizantes , Suelo
4.
Sci Total Environ ; 657: 987-999, 2019 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-30677964

RESUMEN

Sustainable agricultural development is urgently required to satisfy future food demands while decreasing environmental costs. Intercropping can increase per-unit farmland productivity through a resource-efficient utilization. However, the fate of N in intercropping systems remains unclear. To study the yield advantages and the fate of N in additive maize-soybean relay intercropping (IMS) systems, we quantified crop yield, soil N transformation abilities, soil bacterial abundances, and the fate of 15N. This study was conducted using three planting patterns, namely, monoculture maize (Zea mays L.) (MM), monoculture soybean (Glycine max L. Merr.) (MS), and IMS, and two N application rates, specifically, no N and applied N (N1, 45 and 135 kg N ha-1 for MS and MM, correspondingly; and N for the IMS, which was the sum of the monocultures). Results showed that a higher per-unit farmland productivity and a lower land use intensity are attained in the intercropping system than in the corresponding monocultures. In addition, land equivalent ratio (LER) ranges from 1.85 to 2.20. Moreover, the fate of 15N showed that the N uptake and residual are the highest, whereas N loss in the IMS is the lowest among all planting patterns. Intercropping had an increased N use efficiency by increasing N utilization efficiency, rather than N uptake efficiency. The abundance of ammonia oxidizer and denitrifier indicated that IMS improves the structure of soil microorganisms. Furthermore, the transformation abilities of soil N denoted that intercropping strengthens ammonifying and nitrifying capacities to increase soil N residual while decreasing ammonia volatilization and N2O emission. Finally, the greenhouse warming potential and gas intensity of N2O were significantly lower in the IMS than in the corresponding monocultures. In summary, the IMS system provides an environmentally friendly approach to increasing farmland productivity.


Asunto(s)
Agricultura/métodos , Glycine max/crecimiento & desarrollo , Nitrógeno/análisis , Suelo/química , Zea mays/crecimiento & desarrollo , China , Productos Agrícolas/crecimiento & desarrollo , Desnitrificación/genética , Fertilizantes , Expresión Génica , Nitrógeno/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...