RESUMEN
With the antibiotic crisis intensifies, the defense and treatment of pathogen infections in safe and effective fashion has become a critical issue. Herein, we report a novel and advanced type of sterilization agent designed via the functionalization DNA nanocarriers based on dihydromyricetin and CuO-loaded nanoparticles (DNA/DMY-CuO). Firstly, a pure dihydromyricetin (DMY) isolated from Ampelopsis grossedentata is used as a bridge to the stimulate the construction of DNA cross-linking networks by hydrogen bonding. Subsequently, a 3D spherical CuO-loaded nanocomposite (204.39 nm) is customized using the DNA/DMY network as a biological template through a simple coordination-assisted self-assembly method, which exhibits a high dispersibility, water-solubility and physiological stability. The reversible physical interactions in nanocarriers allows the selective separation and automatic release of CuO NPs from DNA/DMY-CuO in neutral and wound exudate environments, thereby extending the survival period of CuO NPs by nearly 24 h. Meanwhile, the nanocarriers system relied on the strong binding ability of DMY to the outer membrane of Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) achieves controlled drug delivery onto the pathogen wall. The advanced antibacterial action of DNA/DMY-CuO also reflected in membrane destruction, cytoplasmic constituent leakages and ATP synthetic pathway cessation, thereby halting cytosolic metalloregulatory mechanisms and minimizing drug-resistant bacteria. In summary, such multi-functional CuO-loaded nanocomposite provides a water-dispersibility, controllable, low cytotoxicity and long-effective platform to address the ever-growing threats of bacterial infections.
Asunto(s)
Nanocompuestos , Staphylococcus aureus , Antibacterianos/farmacología , Cobre , ADN/farmacología , Escherichia coli , Flavonoles , Agua/farmacologíaRESUMEN
Immunogenic, methionine copper-induced response had proven to be precedent in providing resistance against certain diseases in fish. This study allocates the fitness strategy for Oreochromis niloticus by introducing and incorporating the well-designed, stabilized, and biocompatible N-carbamoyl-methionine copper (NCM-Cu) as a Cu potent source in diet that enhances the bioavailability and fitness. The synchronized NCM-Cu complex was characterized by directing ultraviolet and visible spectrophotometry (UV-vis), Fourier-transform infrared (FTIR), X-ray diffractometry (XRD), thermogravimetric analysis (TGA), and single-crystal X-ray diffraction. Results revealed blue columnar crystalline, NCM-Cu complex with an empirical formula as C12H30CuN4O10S2. Anonymously, the overall growth performance of the fish remained unaltered with NCM-Cu adjunct feed. NCM-Cu significantly raised the Cu accumulation in the fish muscles, liver, gill, and intestine in contrast to the basic Cu-rich feed. The serum antioxidant enzyme activity elevated up to (ceruloplasmin: 19.38 U/L) and the lowest liver malondialdehyde (MDA) content (8.81 nmol/mg prot.) and triglyceride content (0.39 nmol/g prot.) were observed in the NCM-Cu group as compared to the basic Cu and CuSO4 groups, suggesting that NCM-Cu promoted antioxidative responses and alleviated lipid peroxidation of O. niloticus. Overweening, the synthesized complex, NCM-Cu significantly regulated the expression levels of lysozyme, immunoglobulin M, complement 4, and complement 3 up to 10.93 U/mL, 0.72, 0.77, and 1.18 mg/mL in serum, respectively. Thus, such endorsed results reveal the preeminence of NCM-Cu-supplemented diet for the fitness in O. niloticus.
RESUMEN
Dihydromyricetin (DMY) is a kind of flavone. It has a variety of physiological effects, and its content in Ampelopsis grossedentata is as high as 35%. There are two shortcomings in the traditional batch extraction process commonly used in a laboratory: long extraction time and low extraction rate. In this study, a new chelating extraction method was proposed, that is, Zn2+ was introduced into the extraction and purification process to chelate with DMY, and the yield and purity were taken as evaluation indices for a comparative study with the traditional batch extraction method. In addition, 1H NMR, single-crystal X-ray diffraction, IR, and UV were used to analyze the product structure; thermogravimetry and differential thermal analysis was utilized to examine the thermal stability of DMY. The results were shown as follows. Compared with the batch extraction method, the chelation extraction method could effectively avoid the oxidation of DMY by air during the extraction and purification process, and the yield of the DMY also increased. Furthermore, this method was time-saving. Through investigating the extraction process and characterizing the structure and thermal stability of DMY, the chelating extraction method could be considered to provide a reference for commercial applications of DMY.
RESUMEN
The purpose of this study was to determine whether the enteric coating process affects growth performance, Fe bioavailability, and gene expression levels that maintain iron balance in the body. The test was divided into the control group, ferrous sulfate group, ferrous fumarate group, ferrous glycine chelate(1:1) (Fe-Gly(1:1)) group, ferrous glycine chelate(2:1) (Fe-Gly(2:1)) group, enteric-coated Fe-Gly(1:1) group, and enteric-coated Fe-Gly(2:1) group. The results showed that the growth performance of the rats in each iron supplement group was no significant difference among them. The results of serum biochemical indicators showed that the antioxidant capacity of the rats in the iron supplement group after enteric coating increased. The iron supplementation effect of Fe-Gly(1:1) and Fe-Gly(2:1) was better than that of ferrous sulfate, and the effect of Fe-Gly(1:1) after enteric coating was enhanced. The expression levels of IRP1 and IRP2 in the genes of enteric-coated Fe-Gly(1:1) and enteric-coated Fe-Gly(2:1) were significantly higher than those of ferrous sulfate. The expression levels of IRP1 and IRP2 in the protein of enteric-coated Fe-Gly(1:1) group were significantly higher than those in the Fe-Gly(1:1) group. The above results show that Fe-Gly can improve the bioavailability and antioxidant capacity of iron and reduce the iron output of feces after enteric coating.