Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
FASEB J ; 38(15): e23873, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39105468

RESUMEN

For patients with lower limb amputations, prostheses are immensely helpful for mobility and the ability to perform job-related or recreational activities. However, the skin covering the amputation stump is typically transposed from adjacent areas of the leg and lacks the weight-bearing capacity that is only found in the specialized skin covering the palms and soles (a.k.a. volar skin). As a result, the skin tissue in direct contact with the prosthesis frequently breaks down, leading to the development of painful sores and other complications that limit, and often preclude, the use of prostheses. Transplanting volar skin onto amputation stumps could be a solution to these problems, but traditional skin transplantation techniques cause substantial morbidity at the donor site, such as pain and scarring, which are especially problematic for volar skin given the critical functional importance of the volar skin areas. We previously developed the technology to collect and engraft full-thickness skin tissue while avoiding long-term donor site morbidity, by harvesting the skin in the form of small (~0.5 mm diameter) cores that we termed "micro skin tissue columns" (MSTCs), so that each donor wound is small enough to heal quickly and without clinically appreciable scarring or other long-term abnormalities. The goal of this study was to establish whether a similar approach could be used to confer the structural and molecular characteristics of volar skin ectopically to other skin areas. In a human-to-mouse xenograft model, we show the long-term persistence of various human plantar MSTC-derived cell types in the murine recipient. Then in an autologous porcine model, we harvested MSTCs from the bottom of the foot and transplanted them onto excision wounds on the animals' trunks. The healing processes at both the donor and graft sites were monitored over 8 weeks, and tissue samples were taken to verify volar-specific characteristics by histology and immunohistochemistry. The volar donor sites were well-tolerated, healed rapidly, and showed no signs of scarring or any other long-term defects. The graft sites were able to maintain volar-specific histologic features and expression of characteristics protein markers, up to the 8-week duration of this study. These results suggest that MSTC grafting could be a practical approach to obtain autologous donor volar skin tissue, confer volar skin characteristics ectopically to nonvolar skin areas, improve the load-bearing capacity of amputation stump skin, and ultimately enhance mobility and quality-of-life for lower limb amputees.


Asunto(s)
Trasplante de Piel , Piel , Soporte de Peso , Animales , Trasplante de Piel/métodos , Ratones , Piel/metabolismo , Humanos , Femenino , Masculino , Porcinos
2.
J Invest Dermatol ; 144(7): 1633-1648.e14, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38237729

RESUMEN

Wound research has typically been performed without regard for where the wounds are located on the body, despite well-known heterogeneities in physical and biological properties between different skin areas. The skin covering the palms and soles is highly specialized, and plantar ulcers are one of the most challenging and costly wound types to manage. Using primarily the porcine model, we show that plantar skin is molecularly and functionally more distinct from nonplantar skin than previously recognized, with unique gene and protein expression profiles, broad alterations in cellular functions, constitutive activation of many wound-associated phenotypes, and inherently delayed healing. This unusual physiology is likely to play a significant but underappreciated role in the pathogenesis of plantar ulcers as well as the last 25+ years of futility in therapy development efforts. By revealing this critical yet unrecognized pitfall, we hope to contribute to the development of more effective therapies for these devastating nonhealing wounds.


Asunto(s)
Fenotipo , Piel , Cicatrización de Heridas , Animales , Cicatrización de Heridas/fisiología , Porcinos , Piel/patología , Piel/lesiones , Piel/metabolismo , Modelos Animales de Enfermedad , Úlcera del Pie/fisiopatología , Úlcera del Pie/patología , Humanos , Femenino , Fenómenos Fisiológicos de la Piel , Pie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...