Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Phys Med Biol ; 69(8)2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38452383

RESUMEN

Objective. The aim of this work is to investigate the response of the Roos chamber (type 34001) irradiated by clinical proton beams in magnetic fields.Approach. At first, a Fano test was implemented in Monte Carlo software package GATE version 9.2 (based on Geant4 version 11.0.2) using a cylindrical slab geometry in a magnetic field up to 1 T. In accordance to an experimental setup (Fuchset al2021), the magnetic field correction factorskQB⃗of the Roos chamber were determined at different energies up to 252 MeV and magnetic field strengths up to 1 T, by separately simulating the ratios of chamber signalsMQ/MQB⃗,without and with magnetic field, and the dose-conversion factorsDw,QB⃗/Dw,Qin a small cylinder of water, with and without magnetic field. Additionally, detailed simulations were carried out to understand the observed magnetic field dependence.Main results. The Fano test was passed with deviations smaller than 0.25% between 0 and 1 T. The ratios of the chamber signals show both energy and magnetic field dependence. The maximum deviation of the dose-conversion factors from unity of 0.22% was observed at the lowest investigated proton energy of 97.4 MeV andB⃗= 1 T. The resultingkQB⃗factors increase initially with the applied magnetic field and decrease again after reaching a maximum at around 0.5 T; except for the lowest 97.4 MeV beam that show no observable magnetic field dependence. The deviation from unity of the factors is also larger for higher proton energies, where the maximum lies at 1.0035(5), 1.0054(7) and 1.0069(7) for initial energies ofE0= 152, 223.4 and 252 MeV, respectively.Significance. Detailed Monte Carlo studies showed that the observed effect can be mainly attributed to the differences in the transport of electrons produced both outside and inside of the air cavity in the presence of a magnetic field.


Asunto(s)
Terapia de Protones , Protones , Radiometría/métodos , Terapia de Protones/métodos , Campos Magnéticos , Método de Montecarlo
2.
Med Phys ; 51(3): 2293-2305, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37898105

RESUMEN

BACKGROUND: The combination of magnetic resonance imaging and proton therapy offers the potential to improve cancer treatment. The magnetic field (MF)-dependent change in the dosage of ionization chambers in magnetic resonance imaging-integrated proton therapy (MRiPT) is considered by the correction factor k B ⃗ , M , Q $k_{\vec{B},M,Q}$ , which needs to be determined experimentally or computed via Monte Carlo (MC) simulations. PURPOSE: In this study, k B ⃗ , M , Q $k_{\vec{B},M,Q}$ was both measured and simulated with high accuracy for a plane-parallel ionization chamber at different clinical relevant proton energies and MF strengths. MATERIAL AND METHODS: The dose-response of the Advanced Markus chamber (TM34045, PTW, Freiburg, Germany) irradiated with homogeneous 10 × $\times$ 10 cm 2 $^2$ quasi mono-energetic fields, using 103.3, 128.4, 153.1, 223.1, and 252.7 MeV proton beams was measured in a water phantom placed in the MF of an electromagnet with MF strengths of 0.32, 0.5, and 1 T. The detector was positioned at a depth of 2 g/cm 2 $^2$ in water, with chamber electrodes parallel to the MF lines and perpendicular to the proton beam incidence direction. The measurements were compared with TOPAS MC simulations utilizing COMSOL-calculated 0.32, 0.5, and 1 T MF maps of the electromagnet. k B ⃗ , M , Q $k_{\vec{B},M,Q}$ was calculated for the measurements for all energies and MF strengths based on the equation: k B ⃗ , M , Q = M Q M Q B ⃗ $k_{\vec{B},M,Q}=\frac{M_\mathrm{Q}}{M_\mathrm{Q}^{\vec{B}}}$ , where M Q B ⃗ $M_\mathrm{Q}^{\vec{B}}$ and M Q $M_\mathrm{Q}$ were the temperature and air-pressure corrected detector readings with and without the MF, respectively. MC-based correction factors were determined as k B ⃗ , M , Q = D det D det B ⃗ $k_{\vec{B},M,Q}=\frac{D_\mathrm{det}}{D_\mathrm{det}^{\vec{B}}}$ , where D det B ⃗ $D_\mathrm{det}^{\vec{B}}$ and D det $D_\mathrm{det}$ were the doses deposited in the air cavity of the ionization chamber model with and without the MF, respectively. Furthermore, MF effects on the chamber dosimetry are studied using MC simulations, examining the impact on the absorbed dose-to-water ( D W $D_{W}$ ) and the shift in depth of the Bragg peak. RESULTS: The detector showed a reduced dose-response for all measured energies and MF strengths, resulting in experimentally determined k B ⃗ , M , Q $k_{\vec{B},M,Q}$ values larger than unity. For all energies and MF strengths examined, k B ⃗ , M , Q $k_{\vec{B},M,Q}$ ranged between 1.0065 and 1.0205. The dependence on the energy and the MF strength was found to be non-linear with a maximum at 1 T and 252.7 MeV. The MC simulated k B ⃗ , M , Q $k_{\vec{B},M,Q}$ values agreed with the experimentally determined correction factors within their standard deviations with a maximum difference of 0.6%. The MC calculated impact on D W $D_{W}$ was smaller 0.2 %. CONCLUSION: For the first time, measurements and simulations were compared for proton dosimetry within MFs using an Advanced Markus chamber. Good agreement of k B ⃗ , M , Q $k_{\vec{B},M,Q}$ was found between experimentally determined and MC calculated values. The performed benchmarking of the MC code allows for calculating k B ⃗ , M , Q $k_{\vec{B},M,Q}$ for various ionization chamber models, MF strengths and proton energies to generate the data needed for a proton dosimetry protocol within MFs and is, therefore, a step towards MRiPT.


Asunto(s)
Terapia de Protones , Protones , Radiometría/métodos , Terapia de Protones/métodos , Método de Montecarlo , Agua , Campos Magnéticos
3.
Int J Mol Sci ; 24(23)2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-38069337

RESUMEN

In vitro therapeutic efficacy studies are commonly conducted in cell monolayers. However, three-dimensional (3D) tumor spheroids are known to better represent in vivo tumors. This study used [177Lu]Lu-PSMA-I&T, an already clinically applied radiopharmaceutical for targeted radionuclide therapy against metastatic castrate-resistant prostate cancer, to demonstrate the differences in the radiobiological response between 2D and 3D cell culture models of the prostate cancer cell lines PC-3 (PSMA negative) and LNCaP (PSMA positive). After assessing the target expression in both models via Western Blot, cell viability, reproductive ability, and growth inhibition were assessed. To investigate the geometric effects on dosimetry for the 2D vs. 3D models, Monte Carlo simulations were performed. Our results showed that PSMA expression in LNCaP spheroids was highly preserved, and target specificity was shown in both models. In monolayers of LNCaP, no short-term (48 h after treatment), but only long-term (14 days after treatment) radiobiological effects were evident, showing decreased viability and reproductive ability with the increasing activity. Further, LNCaP spheroid growth was inhibited with the increasing activity. Overall, treatment efficacy was higher in LNCaP spheroids compared to monolayers, which can be explained by the difference in the resulting dose, among others.


Asunto(s)
Neoplasias de la Próstata Resistentes a la Castración , Neoplasias de la Próstata , Masculino , Humanos , Neoplasias de la Próstata/metabolismo , Radiofármacos/uso terapéutico , Radiometría , Radioisótopos , Neoplasias de la Próstata Resistentes a la Castración/tratamiento farmacológico , Lutecio/uso terapéutico , Antígeno Prostático Específico , Compuestos Heterocíclicos con 1 Anillo , Dipéptidos
4.
Med Phys ; 50(11): 7167-7176, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37434465

RESUMEN

BACKGROUND: Combining carbon ion therapy with on-bed MR imaging has the potential to bring particle therapy to a new level of precision. However, the introduction of magnetic fields brings challenges for dosimetry and quality assurance. For protons, a small, but significant change in detector response was shown in the presence of magnetic fields previously. For carbon ion beams, so far no such experiments have been performed. PURPOSE: To investigate the influence of external magnetic fields on the response of air-filled ionization chambers. METHODS: Four commercially available ionization chambers, three thimble type (Farmer, Semiflex, and PinPoint), and a plane parallel (Bragg peak) detector were investigated. Detectors were aligned in water such that their effective point of measurement was located at 2 cm depth. Irradiations were performed using 10 × 10 cm 2 $10\times 10\nobreakspace \mathrm{cm}^2$ square fields for carbon ions of 186.1, 272.5, and 402.8 MeV/u employing magnetic field strengths of 0, 0.25, 0.5, and 1 T. In addition, the detector response for protons and carbon ions was compared taking into account the secondary electron spectra and employing protons of 252.7 MeV for comparison. RESULTS: For all four detectors, a statistically significant change in detector response, dependent on the magnetic field strength, was found. The effect was more pronounced for higher energies. The highest effects were found at 0.5 T for the PinPoint detector with a change in detector response of 1.1%. The response of different detector types appeared to be related to the cavity diameter. For proton and carbon ion irradiation with similar secondary electron spectra, the change in detector response was larger for carbon ions compared to protons. CONCLUSION: A small, but significant dependence of the detector response was found for carbon ion irradiation in a magnetic field. The effect was found to be larger for smaller cavity diameters and at medium magnetic field strengths. Changes in detector response were more pronounced for carbon ions compared to protons.


Asunto(s)
Radioterapia de Iones Pesados , Protones , Radiometría/métodos , Radioterapia de Iones Pesados/métodos , Carbono/uso terapéutico , Campos Magnéticos , Imagen por Resonancia Magnética , Método de Montecarlo
5.
J Appl Clin Med Phys ; 24(4): e13896, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36704919

RESUMEN

PURPOSE: Reporting on the first implementation of a proton dedicated commercial device (IBA Sphinx/Lynx) for daily Quality Assurance (QA) of scanned proton and carbon ion beams. METHODS: Daily QA trendlines over more than 3 years for protons and more than 2 years for carbon ions have been acquired. Key daily QA parameters were reviewed, namely the spot size and position, beam range, Bragg peak width, coincidence (between beam and imaging system isocenters), homogeneity and dose. RESULTS: The performance of the QA equipment for protons and carbon ions was evaluated. Daily QA trendlines allowed us to detect machine performance drifts and changes. The definition of tolerances and action levels is provided and compared with levels used in the literature. CONCLUSION: The device has been successfully implemented for routine daily QA activities in a dual particle therapy facility for more than 2 years. It improved the efficiency of daily QA and provides a comprehensive QA process.


Asunto(s)
Lynx , Terapia de Protones , Humanos , Animales , Protones , Terapia de Protones/métodos , Iones , Carbono , Radiometría
6.
Z Med Phys ; 33(2): 135-145, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-35688672

RESUMEN

Monte Carlo (MC) simulations of X-ray image devices require splitting the simulation into two parts (i.e. the generation of x-rays and the actual imaging). The X-ray production remains unchanged for repeated imaging and can thus be stored in phase space (PhS) files and used for subsequent MC simulations. Especially for medical images these dedicated PhS files require a large amount of data storage, which is partly why Generative Adversarial Networks (GANs) were recently introduced. We enhanced the approach by a conditional GAN to model multiple energies using one network. This study compares the use of PhSs, GANs, and conditional GANs as photon source with measurements. An X-ray -based imaging system (i.e. ImagingRing) was modelled in this study. half-value layers (HVLs), focal spot, and Heel effect were measured for subsequent comparison. MC simulations were performed with GATE-RTion v1.0 considering the geometry and materials of the imaging system with vendor specific schematics. A traditional GAN model as well as the favourable conditional GAN was implemented for PhS generation. Results of the MC simulation were in agreement with the measurements regarding HVL, focal spot, and Heel effect. The conditional GAN performed best with a non-saturated loss function with R1 regularisation and gave similarly results as the traditional GAN approach. GANs proved to be superior to the PhS approach in terms of data storage and calculation overhead. Moreover, a conditional GAN enabled an energy interpolation to separate the network training process from the final required X-ray energies.


Asunto(s)
Fotones , Rayos X , Radiografía , Simulación por Computador , Método de Montecarlo
7.
Med Phys ; 50(2): 1019-1028, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36504399

RESUMEN

BACKGROUND: Radiation therapy is continuously moving towards more precise dose delivery. The combination of online MR imaging and particle therapy, for example, radiation therapy using protons or carbon ions, could enable the next level of precision in radiotherapy. In particle therapy, research towards a combination of MR and particle therapy is well underway, but still far from clinical systems. The combination of high magnetic fields with particle therapy delivery poses several challenges for treatment planning, treatment workflow, dose delivery, and dosimetry. PURPOSE: To present a workflow for commissioning of a light ion beam line with an integrated dipole magnet to perform MR-guided particle therapy (MRgPT) research, producing not only basic beam data but also magnetic field maps for accurate dose calculation. Accurate dose calculation in magnetic field environments requires high-quality magnetic field maps to compensate for magnetic-field-dependent trajectory changes and dose perturbations. METHODS: The research beam line at MedAustron was coupled with a resistive dipole magnet positioned at the isocenter. Beam data were measured for proton and carbon ions with and without an applied magnetic field of 1 T. Laterally integrated depth-dose curves (IDC) as well as beam profiles were measured in water while beam trajectories were measured in air. Based on manufacturer data, an in silico model of the magnet was created, allowing to extract high-quality 3D magnetic field data. An existing GATE/Geant4 Monte Carlo (MC) model of the beam line was extended with the generated magnetic field data and benchmarked against experimental data. RESULTS: A 3D magnetic field volume covering fringe fields until 50 mT was found to be sufficient for an accurate beam trajectory modeling. The effect on particle range retraction was found to be 2.3 and 0.3 mm for protons and carbon ions, respectively. Measured lateral beam offsets in water agreed within 0.4 and -0.5 mm with MC simulations for protons and carbon ions, respectively. Experimentally determined in-air beam trajectories agreed within 0.4 mm in the homogeneous magnetic field area. CONCLUSION: The presented approach based on in silico modeling and measurements allows to commission a beam line for MRgPT while providing benchmarking data for the magnetic field modeling, required for state-of-the art dose calculation methods.


Asunto(s)
Terapia de Protones , Protones , Terapia de Protones/métodos , Simulación por Computador , Imagen por Resonancia Magnética/métodos , Método de Montecarlo , Agua , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador
8.
Phys Med Biol ; 67(18)2022 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-36001985

RESUMEN

This paper reviews the ecosystem of GATE, an open-source Monte Carlo toolkit for medical physics. Based on the shoulders of Geant4, the principal modules (geometry, physics, scorers) are described with brief descriptions of some key concepts (Volume, Actors, Digitizer). The main source code repositories are detailed together with the automated compilation and tests processes (Continuous Integration). We then described how the OpenGATE collaboration managed the collaborative development of about one hundred developers during almost 20 years. The impact of GATE on medical physics and cancer research is then summarized, and examples of a few key applications are given. Finally, future development perspectives are indicated.


Asunto(s)
Ecosistema , Programas Informáticos , Simulación por Computador , Método de Montecarlo , Física
9.
Phys Med Biol ; 67(15)2022 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-35395649

RESUMEN

Helium ion beam therapy for the treatment of cancer was one of several developed and studied particle treatments in the 1950s, leading to clinical trials beginning in 1975 at the Lawrence Berkeley National Laboratory. The trial shutdown was followed by decades of research and clinical silence on the topic while proton and carbon ion therapy made debuts at research facilities and academic hospitals worldwide. The lack of progression in understanding the principle facets of helium ion beam therapy in terms of physics, biological and clinical findings persists today, mainly attributable to its highly limited availability. Despite this major setback, there is an increasing focus on evaluating and establishing clinical and research programs using helium ion beams, with both therapy and imaging initiatives to supplement the clinical palette of radiotherapy in the treatment of aggressive disease and sensitive clinical cases. Moreover, due its intermediate physical and radio-biological properties between proton and carbon ion beams, helium ions may provide a streamlined economic steppingstone towards an era of widespread use of different particle species in light and heavy ion therapy. With respect to the clinical proton beams, helium ions exhibit superior physical properties such as reduced lateral scattering and range straggling with higher relative biological effectiveness (RBE) and dose-weighted linear energy transfer (LETd) ranging from ∼4 keVµm-1to ∼40 keVµm-1. In the frame of heavy ion therapy using carbon, oxygen or neon ions, where LETdincreases beyond 100 keVµm-1, helium ions exhibit similar physical attributes such as a sharp lateral penumbra, however, with reduced radio-biological uncertainties and without potentially spoiling dose distributions due to excess fragmentation of heavier ion beams, particularly for higher penetration depths. This roadmap presents an overview of the current state-of-the-art and future directions of helium ion therapy: understanding physics and improving modeling, understanding biology and improving modeling, imaging techniques using helium ions and refining and establishing clinical approaches and aims from learned experience with protons. These topics are organized and presented into three main sections, outlining current and future tasks in establishing clinical and research programs using helium ion beams-A. Physics B. Biological and C. Clinical Perspectives.


Asunto(s)
Radioterapia de Iones Pesados , Terapia de Protones , Carbono/uso terapéutico , Radioterapia de Iones Pesados/métodos , Helio/uso terapéutico , Iones , Protones , Efectividad Biológica Relativa
10.
Z Med Phys ; 32(3): 326-333, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35058110

RESUMEN

BACKGROUND AND PURPOSE: Magnetic field effects on the radiobiological effectiveness during treatment of magnetic resonance (MRI) guided particle therapy are being debated. This study aims at assessing the influence of a perpendicular magnetic field on the biological effects in two human cancer cell lines irradiated with proton or carbon ions. METHODS AND MATERIALS: In vitro cell irradiations were performed in water inside a perpendicular magnetic field of 0 and 1T for both protons and carbon ions. Samples were located in the center of a spread-out Bragg peak at 8cm water equivalent depth with a dose averaged linear energy transfer (LETd) of 4.2 or 83.4keV/µm for protons and carbon ions, respectively. Physical dose levels of 0, 0.5, 1, 2, 4 and 6Gy were employed. The irradiation field was shifted and laterally enlarged, to compensate for the beam deflection due to the magnetic field and ensure consistent and homogenous irradiations of the flasks. The human cancer cell lines SKMel (Melanoma) and SW1353 (chondrosarcoma) were selected which represent a high and a low (α/ß)x ratio cell type. Cell survival curves were generated applying a linear-quadratic curve fit. DNA damage and DNA damage clearance were assessed via γH2AX foci quantification at 1 and 24h post radiation treatment. RESULTS: Without a magnetic field, RBE10 values of 1.04±0.03 (SW1353) and 1.51±0.06 (SKMel) as well as RBE80 values of 0.93±0.15 (SW1353) and 2.28±0.40 (SKMel) were calculated for protons. Carbon treatments yielded RBE10 values of 1.68±0.04 (SW1353) and 2.30±0.07 (SKMel) and RBE80 values of 2.19±0.24 (SW1353) and 4.06±0.33 (SKMel). For a field strength of B=1T, RBE10 values of 1.06±0.03 (SW1353) and 1.47±0.06 (SKMel) resulted from protons, while RBE10 values of 1.70±0.05 (SW1353) and 2.37±0.08 (SKMel) were obtained for carbon ions. RBE80 values were calculated to be 1.06±0.12 (SW1353) and 2.33±0.40 (SKMel) following protons and 2.13±0.25 (SW1353) and 4.29±0.35 (SKMel) following carbon treatments. Substantially increased γH2AX foci per nucleus were found in both cell lines 1h after radiation with both ion species. At the 24h time point only carbon treated samples of both cell lines showed increased γH2AX levels. The presence of the magnetic field did neither influence the survival parameters of either cell line, nor initial DNA damage and DNA damage clearance. CONCLUSIONS: Applying a perpendicular magnetic field did not influence the cell survival, DNA repair, nor the biological effectiveness of protons or carbon ions in two human cancer cell lines.


Asunto(s)
Neoplasias , Terapia de Protones , Carbono/uso terapéutico , Supervivencia Celular/efectos de la radiación , Daño del ADN , Humanos , Iones , Campos Magnéticos , Método de Montecarlo , Protones , Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...