Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-39464096

RESUMEN

The human antibody repertoire is broadly reactive with carbohydrate antigens represented in the universe of all living things, including both the host/self- as well as the commensal microflora-derived glycomes. Here we have used BCR receptor cloning and expression together with single-cell transcriptomics to analyze the B cell repertoire to the ubiquitous N-acetyl-D-glucosamine (GlcNAc) epitope in human cohorts and dissect the immune phylogeny of this predominant class of antibodies. We find that circulating anti-GlcNAc B cells exhibiting canonical BMem phenotypes emerge rapidly after birth and couple this observation with evidence for germinal center-dependent affinity maturation of carbohydrate-specific B cell receptors in situ during early childhood. Direct analysis of individual B cell clonotypes reveals they exhibit strikingly distinct fine-specificity profiles for palettes of GlcNAc containing moieties. These results suggest that a generalized exposure to complex environmental glycans drives the steady state anti-glycan repertoire.

2.
Nat Commun ; 15(1): 3140, 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38605083

RESUMEN

Pig-to-human xenotransplantation is rapidly approaching the clinical arena; however, it is unclear which immunomodulatory regimens will effectively control human immune responses to pig xenografts. Here, we transplant a gene-edited pig kidney into a brain-dead human recipient on pharmacologic immunosuppression and study the human immune response to the xenograft using spatial transcriptomics and single-cell RNA sequencing. Human immune cells are uncommon in the porcine kidney cortex early after xenotransplantation and consist of primarily myeloid cells. Both the porcine resident macrophages and human infiltrating macrophages express genes consistent with an alternatively activated, anti-inflammatory phenotype. No significant infiltration of human B or T cells into the porcine kidney xenograft is detectable. Altogether, these findings provide proof of concept that conventional pharmacologic immunosuppression may be able to restrict infiltration of human immune cells into the xenograft early after compatible pig-to-human kidney xenotransplantation.


Asunto(s)
Edición Génica , Riñón , Animales , Porcinos , Humanos , Animales Modificados Genéticamente , Xenoinjertos , Trasplante Heterólogo , Rechazo de Injerto/genética
3.
bioRxiv ; 2023 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-37034637

RESUMEN

Donor-specific antibody (DSA) responses against human leukocyte antigen (HLA) proteins mismatched between kidney transplant donors and recipients cause allograft loss. Using single-cell, molecular, structural, and proteomic techniques, we profiled the HLA-specific (alloreactive) B cell response in kidney and blood of a transplant recipient with antibody-mediated rejection (AMR). We identified 14 distinct alloreactive B cell lineages, which spanned the rejected organ and blood and expressed high-affinity anti-donor HLA-specific B cell receptors, many of which were clonally linked to circulating DSA. The alloreactive B cell response was focused on exposed, solvent-accessible mismatched HLA residues, while also demonstrating extensive contacts with self-HLA residues. Consistent with structural evidence of self-recognition, measurable self-reactivity by donor-specific B cells was common and positively correlated with anti-donor affinity maturation. Thus, allo- and self-reactive signatures appeared to converge, suggesting that during AMR, the recognition of non-self and breaches of tolerance conspire to produce a pathogenic donor-specific adaptive response.

4.
Mucosal Immunol ; 16(3): 287-301, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36931600

RESUMEN

Immunoglobulin (Ig) E is central to the pathogenesis of allergic conditions, including allergic fungal rhinosinusitis. However, little is known about IgE antibody secreting cells (ASCs). We performed single-cell RNA sequencing from cluster of differentiation (CD)19+ and CD19- ASCs of nasal polyps from patients with allergic fungal rhinosinusitis (n = 3). Nasal polyps were highly enriched in CD19+ ASCs. Class-switched IgG and IgA ASCs were dominant (95.8%), whereas IgE ASCs were rare (2%) and found only in the CD19+ compartment. Through Ig gene repertoire analysis, IgE ASCs shared clones with IgD-CD27- "double-negative" B cells, IgD+CD27+ unswitched memory B cells, and IgD-CD27+ switched memory B cells, suggesting ontogeny from both IgD+ and memory B cells. Transcriptionally, mucosal IgE ASCs upregulate pathways related to antigen presentation, chemotaxis, B cell receptor stimulation, and survival compared with non-IgE ASCs. Additionally, IgE ASCs have a higher expression of genes encoding lysosomal-associated protein transmembrane 5 (LAPTM5) and CD23, as well as upregulation of CD74 (receptor for macrophage inhibitory factor), store-operated Calcium entry-associated regulatory factor (SARAF), and B cell activating factor receptor (BAFFR), which resemble an early minted ASC phenotype. Overall, these findings reinforce the paradigm that human ex vivo mucosal IgE ASCs have a more immature plasma cell phenotype than other class-switched mucosal ASCs and suggest unique functional roles for mucosal IgE ASCs in concert with Ig secretion.


Asunto(s)
Pólipos Nasales , Humanos , Inmunoglobulina E , Células Productoras de Anticuerpos , Mucosa Nasal , Fenotipo , Análisis de la Célula Individual
5.
Immunity ; 56(4): 847-863.e8, 2023 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-36958335

RESUMEN

Seasonal influenza vaccination elicits hemagglutinin (HA)-specific memory B (Bmem) cells, and although multiple Bmem cell populations have been characterized, considerable heterogeneity exists. We found that HA-specific human Bmem cells differed in the expression of surface marker FcRL5 and transcriptional factor T-bet. FcRL5+T-bet+ Bmem cells were transcriptionally similar to effector-like memory cells, while T-betnegFcRL5neg Bmem cells exhibited stem-like central memory properties. FcRL5+ Bmem cells did not express plasma-cell-commitment factors but did express transcriptional, epigenetic, metabolic, and functional programs that poised these cells for antibody production. Accordingly, HA+ T-bet+ Bmem cells at day 7 post-vaccination expressed intracellular immunoglobulin, and tonsil-derived FcRL5+ Bmem cells differentiated more rapidly into antibody-secreting cells (ASCs) in vitro. The T-bet+ Bmem cell response positively correlated with long-lived humoral immunity, and clonotypes from T-bet+ Bmem cells were represented in the secondary ASC response to repeat vaccination, suggesting that this effector-like population predicts influenza vaccine durability and recall potential.


Asunto(s)
Vacunas contra la Influenza , Gripe Humana , Humanos , Gripe Humana/prevención & control , Formación de Anticuerpos , Células B de Memoria , Vacunación , Memoria Inmunológica , Anticuerpos Antivirales
6.
Res Sq ; 2023 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-36711785

RESUMEN

Pig-to-human xenotransplantation is rapidly approaching the clinical arena; however, it is unclear which immunomodulatory regimens will effectively control human immune responses to pig xenografts. We transplanted a gene-edited pig kidney into a brain-dead human recipient on pharmacologic immunosuppression and studied the human immune response to the xenograft using spatial transcriptomics and single-cell RNA sequencing. Human immune cells were uncommon in the porcine kidney cortex early after xenotransplantation and consisted of primarily myeloid cells. Both the porcine resident macrophages and human infiltrating macrophages expressed genes consistent with an alternatively activated, anti-inflammatory phenotype. No significant infiltration of human B or T cells into the porcine kidney xenograft was detected. Altogether, these findings provide proof of concept that conventional pharmacologic immunosuppression is sufficient to restrict infiltration of human immune cells into the xenograft early after compatible pig-to-human kidney xenotransplantation.

7.
Immunity ; 53(1): 172-186.e6, 2020 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-32610078

RESUMEN

B-1 B cells derive from a developmental program distinct from that of conventional B cells, through B cell receptor (BCR)-dependent positive selection of fetally derived precursors. Here, we used direct labeling of B cells reactive with the N-acetyl-D-glucosamine (GlcNAc)-containing Lancefield group A carbohydrate of Streptococcus pyogenes to study the effects of bacterial antigens on the emergent B-1 B cell clonal repertoire. The number, phenotype, and BCR clonotypes of GlcNAc-reactive B-1 B cells were modulated by neonatal exposure to heat-killed S. pyogenes bacteria. GlcNAc-reactive B-1 clonotypes and serum antibodies were reduced in germ-free mice compared with conventionally raised mice. Colonization of germ-free mice with a conventional microbiota promoted GlcNAc-reactive B-1 B cell development and concomitantly elicited clonally related IgA+ plasma cells in the small intestine. Thus, exposure to microbial antigens in early life determines the clonality of the mature B-1 B cell repertoire and ensuing antibody responses, with implications for vaccination approaches and schedules.


Asunto(s)
Anticuerpos Antibacterianos/sangre , Antígenos Bacterianos/inmunología , Subgrupos de Linfocitos B/inmunología , Polisacáridos Bacterianos/inmunología , Streptococcus pyogenes/inmunología , Acetilglucosamina/metabolismo , Animales , Animales Recién Nacidos/inmunología , Vida Libre de Gérmenes/inmunología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microbiota/inmunología
8.
Cell Rep Med ; 1(2)2020 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-32577626

RESUMEN

Induction of persistent HIV-1 Envelope (Env) specific antibody (Ab) is a primary goal of HIV vaccine strategies; however, it is unclear whether HIV Env immunization in humans induces bone marrow plasma cells, the presumed source of long-lived systemic Ab. To define the features of Env-specific plasma cells after vaccination, samples were obtained from HVTN 105, a phase I trial testing the same gp120 protein immunogen, AIDSVAX B/E, used in RV144, along with a DNA immunogen in various prime and boost strategies. Boosting regimens that included AIDSVAX B/E induced robust peripheral blood plasmablast responses. The Env-specific immunoglobulin repertoire of the plasmablasts is dominated by VH1 gene usage and targeting of the V3 region. Numerous plasmablast-derived immunoglobulin lineages persisted in the bone marrow >8 months after immunization, including in the CD138+ long-lived plasma cell compartment. These findings identify a cellular linkage for the development of sustained Env-specific Abs following vaccination in humans.


Asunto(s)
Vacunas contra el SIDA/uso terapéutico , Infecciones por VIH/prevención & control , Células Plasmáticas/inmunología , Productos del Gen env del Virus de la Inmunodeficiencia Humana/inmunología , Especificidad de Anticuerpos , Linaje de la Célula/inmunología , Supervivencia Celular/inmunología , Células Cultivadas , Células HEK293 , Infecciones por VIH/patología , Infecciones por VIH/virología , VIH-1/inmunología , VIH-1/fisiología , Humanos , Células Plasmáticas/metabolismo , Células Plasmáticas/patología , Células Plasmáticas/virología , Células THP-1 , Vacunación
9.
JCI Insight ; 4(9)2019 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-31045577

RESUMEN

Human antibody-secreting cells (ASCs) triggered by immunization are globally recognized as CD19loCD38hiCD27hi. Yet, different vaccines give rise to antibody responses of different longevity, suggesting ASC populations are heterogeneous. We define circulating-ASC heterogeneity in vaccine responses using multicolor flow cytometry, morphology, VH repertoire, and RNA transcriptome analysis. We also tested differential survival using a human cell-free system that mimics the bone marrow (BM) microniche. In peripheral blood, we identified 3 CD19+ and 2 CD19- ASC subsets. All subsets contributed to the vaccine-specific responses and were characterized by in vivo proliferation and activation. The VH repertoire demonstrated strong oligoclonality with extensive interconnectivity among the 5 subsets and switched memory B cells. Transcriptome analysis showed separation of CD19+ and CD19- subsets that included pathways such as cell cycle, hypoxia, TNF-α, and unfolded protein response. They also demonstrated similar long-term in vitro survival after 48 days. In summary, vaccine-induced ASCs with different surface markers (CD19 and CD138) are derived from shared proliferative precursors yet express distinctive transcriptomes. Equal survival indicates that all ASC compartments are endowed with long-lived potential. Accordingly, in vivo survival of peripheral long-lived plasma cells may be determined in part by their homing and residence in the BM microniche.


Asunto(s)
Células Productoras de Anticuerpos/inmunología , Células Plasmáticas/inmunología , Transcriptoma , Adulto , Anciano , Formación de Anticuerpos , Antígenos CD19/inmunología , Linfocitos B/inmunología , Médula Ósea/inmunología , Células de la Médula Ósea/inmunología , Femenino , Humanos , Inmunización , Inmunoglobulina G , Cinética , Masculino , Persona de Mediana Edad , Fenotipo , Tétanos/inmunología , Vacunación , Adulto Joven
10.
mBio ; 10(2)2019 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-30862743

RESUMEN

Although most seasonal inactivated influenza vaccines (IIV) contain neuraminidase (NA), the extent and mechanisms of action of protective human NA-specific humoral responses induced by vaccination are poorly resolved. Due to the propensity of influenza virus for antigenic drift and shift and its tendency to elicit predominantly strain-specific antibodies, humanity remains susceptible to waves of new strains of seasonal viruses and is at risk from viruses with pandemic potential for which limited or no immunity may exist. Here we demonstrate that the use of IIV results in increased levels of influenza B virus (IBV) NA-specific serum antibodies. Detailed analysis of the IBV NA B cell response indicates concurrent expansion of IBV NA-specific peripheral blood plasmablasts 7 days after IIV immunization which express monoclonal antibodies with broad and potent antiviral activity against both IBV Victoria and Yamagata lineages and prophylactic and therapeutic activity in mice. These IBV NA-specific B cell clonal lineages persisted in CD138+ long-lived bone marrow plasma cells. These results represent the first demonstration that IIV-induced NA human antibodies can protect and treat influenza virus infection in vivo and suggest that IIV can induce a subset of IBV NA-specific B cells with broad protective potential, a feature that warrants further study for universal influenza vaccine development.IMPORTANCE Influenza virus infections continue to cause substantial morbidity and mortality despite the availability of seasonal vaccines. The extensive genetic variability in seasonal and potentially pandemic influenza strains necessitates new vaccine strategies that can induce universal protection by focusing the immune response on generating protective antibodies against conserved targets such as regions within the influenza neuraminidase protein. We have demonstrated that seasonal immunization stimulates neuraminidase-specific antibodies in humans that are broad and potent in their protection from influenza B virus when tested in mice. These antibodies further persist in the bone marrow, where they are expressed by long-lived antibody-producing cells, referred to here as plasma cells. The significance in our research is the demonstration that seasonal influenza immunization can induce a subset of neuraminidase-specific B cells with broad protective potential, a process that if further studied and enhanced could aid in the development of a universal influenza vaccine.


Asunto(s)
Anticuerpos Antivirales/sangre , Virus de la Influenza B/inmunología , Vacunas contra la Influenza/inmunología , Gripe Humana/prevención & control , Neuraminidasa/inmunología , Células Plasmáticas/inmunología , Proteínas Virales/inmunología , Animales , Anticuerpos Monoclonales/sangre , Protección Cruzada , Modelos Animales de Enfermedad , Voluntarios Sanos , Humanos , Vacunas contra la Influenza/administración & dosificación , Gripe Humana/terapia , Ratones , Infecciones por Orthomyxoviridae/prevención & control , Infecciones por Orthomyxoviridae/terapia , Vacunas de Productos Inactivados/administración & dosificación , Vacunas de Productos Inactivados/inmunología
11.
Immunol Rev ; 284(1): 120-131, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29944759

RESUMEN

Understanding antibody repertoires and in particular, the properties and fates of B cells expressing potentially pathogenic antibodies is critical to define the mechanisms underlying multiple immunological diseases including autoimmune and allergic conditions as well as transplant rejection. Moreover, an integrated knowledge of the antibody repertoires expressed by B cells and plasma cells (PC) of different functional properties and longevity is essential to develop new therapeutic strategies, better biomarkers for disease segmentation, and new assays to measure restoration of B-cell tolerance or, at least, of normal B-cell homeostasis. Reaching these goals, however, will require a more precise phenotypic, functional and molecular definition of B-cell and PC populations, and a comprehensive analysis of the antigenic reactivity of the antibodies they express. While traditionally hampered by technical and ethical limitations in human experimentation, new technological advances currently enable investigators to address these questions in a comprehensive fashion. In this review, we shall discuss these concepts as they apply to the study of Systemic Lupus Erythematosus.


Asunto(s)
Autoanticuerpos/inmunología , Autoinmunidad/inmunología , Linfocitos B/inmunología , Tolerancia Inmunológica/inmunología , Lupus Eritematoso Sistémico/inmunología , Activación de Linfocitos/inmunología , Humanos , Lupus Eritematoso Sistémico/patología
12.
Sci Rep ; 8(1): 4374, 2018 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-29531320

RESUMEN

Influenza's propensity for antigenic drift and shift, and to elicit predominantly strain specific antibodies (Abs) leaves humanity susceptible to waves of new strains with pandemic potential for which limited or no immunity may exist. Subsequently new clinical interventions are needed. To identify hemagglutinin (HA) epitopes that if targeted may confer universally protective humoral immunity, we examined plasmablasts from a subject that was immunized with the seasonal influenza inactivated vaccine, and isolated a human monoclonal Ab (mAb), KPF1. KPF1 has broad and potent neutralizing activity against H1 influenza viruses, and recognized 83% of all H1 isolates tested, including the pandemic 1918 H1. Prophylactically, KPF1 treatment resulted in 100% survival of mice from lethal challenge with multiple H1 influenza strains and when given as late as 72 h after challenge with A/California/04/2009 H1N1, resulted in 80% survival. KPF1 recognizes a novel epitope in the HA globular head, which includes a highly conserved amino acid, between the Ca and Cb antigenic sites. Although recent HA stalk-specific mAbs have broader reactivity, their potency is substantially limited, suggesting that cocktails of broadly reactive and highly potent HA globular head-specific mAbs, like KPF1, may have greater clinical feasibility for the treatment of influenza infections.


Asunto(s)
Anticuerpos Monoclonales/uso terapéutico , Anticuerpos Neutralizantes/uso terapéutico , Subtipo H1N1 del Virus de la Influenza A/inmunología , Infecciones por Orthomyxoviridae/terapia , Animales , Humanos , Inmunidad Humoral , Vacunas contra la Influenza/inmunología , Ratones , Infecciones por Orthomyxoviridae/mortalidad , Especificidad de la Especie , Tasa de Supervivencia
13.
Immunity ; 43(1): 132-45, 2015 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-26187412

RESUMEN

Antibody responses to viral infections are sustained for decades by long-lived plasma cells (LLPCs). However, LLPCs have yet to be characterized in humans. Here we used CD19, CD38, and CD138 to identify four PC subsets in human bone marrow (BM). We found that the CD19(-)CD38(hi)CD138(+) subset was morphologically distinct, differentially expressed PC-associated genes, and exclusively contained PCs specific for viral antigens to which the subjects had not been exposed for more than 40 years. Protein sequences of measles- and mumps-specific circulating antibodies were encoded for by CD19(-)CD38(hi)CD138(+) PCs in the BM. Finally, we found that CD19(-)CD38(hi)CD138(+) PCs had a distinct RNA transcriptome signature and human immunoglobulin heavy chain (VH) repertoire that was relatively uncoupled from other BM PC subsets and probably represents the B cell response's "historical record" of antigenic exposure. Thus, our studies define human LLPCs and provide a mechanism for the life-long maintenance of anti-viral antibodies in the serum.


Asunto(s)
Anticuerpos Antivirales/inmunología , Células de la Médula Ósea/inmunología , Virus del Sarampión/inmunología , Virus de la Parotiditis/inmunología , Células Plasmáticas/inmunología , ADP-Ribosil Ciclasa 1/metabolismo , Adulto , Anciano , Anticuerpos Antivirales/sangre , Antígenos CD19/metabolismo , Humanos , Cadenas Pesadas de Inmunoglobulina/genética , Cadenas Pesadas de Inmunoglobulina/inmunología , Glicoproteínas de Membrana/metabolismo , Persona de Mediana Edad , ARN Mensajero/genética , Sindecano-1/metabolismo , Adulto Joven
14.
Nat Immunol ; 16(7): 755-65, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26006014

RESUMEN

Acute systemic lupus erythematosus (SLE) courses with surges of antibody-secreting cells (ASCs) whose origin, diversity and contribution to serum autoantibodies remain unknown. Here, deep sequencing, proteomic profiling of autoantibodies and single-cell analysis demonstrated highly diversified ASCs punctuated by clones expressing the variable heavy-chain region VH4-34 that produced dominant serum autoantibodies. A fraction of ASC clones contained autoantibodies without mutation, a finding consistent with differentiation outside the germinal centers. A substantial ASC segment was derived from a distinct subset of newly activated naive cells of considerable clonality that persisted in the circulation for several months. Thus, selection of SLE autoreactivities occurred during polyclonal activation, with prolonged recruitment of recently activated naive B cells. Our findings shed light on the pathogenesis of SLE, help explain the benefit of agents that target B cells and should facilitate the design of future therapies.


Asunto(s)
Diversidad de Anticuerpos/inmunología , Células Productoras de Anticuerpos/inmunología , Autoanticuerpos/inmunología , Proliferación Celular , Lupus Eritematoso Sistémico/inmunología , Enfermedad Aguda , Secuencia de Aminoácidos , Diversidad de Anticuerpos/genética , Células Productoras de Anticuerpos/metabolismo , Autoanticuerpos/genética , Autoanticuerpos/metabolismo , Linfocitos B/inmunología , Linfocitos B/metabolismo , Secuencia de Bases , Células Clonales/inmunología , Células Clonales/metabolismo , Citometría de Flujo , Humanos , Inmunoglobulina G/sangre , Inmunoglobulina G/genética , Inmunoglobulina G/inmunología , Cadenas Pesadas de Inmunoglobulina/genética , Cadenas Pesadas de Inmunoglobulina/inmunología , Cadenas Pesadas de Inmunoglobulina/metabolismo , Región Variable de Inmunoglobulina/genética , Región Variable de Inmunoglobulina/inmunología , Región Variable de Inmunoglobulina/metabolismo , Vacunas contra la Influenza/inmunología , Lupus Eritematoso Sistémico/genética , Lupus Eritematoso Sistémico/metabolismo , Datos de Secuencia Molecular , Proteoma/análisis , Proteoma/inmunología , Proteómica/métodos , Homología de Secuencia de Aminoácido , Análisis de la Célula Individual/métodos , Espectrometría de Masas en Tándem , Toxoide Tetánico/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...