Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nanomaterials (Basel) ; 13(6)2023 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-36986026

RESUMEN

The prolific applicability of nanomaterials has made them a common citizen in biological systems, where they interact with proteins forming a biological corona complex. These complexes drive the interaction of nanomaterials with and within the cells, bringing forward numerous potential applications in nanobiomedicine, but also arising toxicological issues and concerns. Proper characterization of the protein corona complex is a great challenge typically handled with the combination of several techniques. Surprisingly, despite inductively coupled plasma mass spectrometry (ICP-MS) being a powerful quantitative technique whose application in nanomaterials characterization and quantification has been consolidated in the last decade, its application to nanoparticle-protein corona studies is scarce. Furthermore, in the last decades, ICP-MS has experienced a turning point in its capabilities for protein quantification through sulfur detection, hence becoming a generic quantitative detector. In this regard, we would like to introduce the potential of ICP-MS in the nanoparticle protein corona complex characterization and quantification complementary to current methods and protocols.

2.
Talanta ; 256: 124309, 2023 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-36753887

RESUMEN

In-depth characterization of functionalized nanomaterials is still a remaining challenge in nanobioanalytical chemistry. In this work, we propose the online coupling of Asymmetric Flow Field-Flow Fractionation (AF4) with UV/Vis, Multiangle Light Scattering (MALS) and Inductively Coupled Plasma-Tandem Mass Spectrometry (ICP-MS/MS) detectors to carry out, in less than 10 min and directly in the functionalization reaction mixture, the complete characterization of gold nanoparticles (AuNPs) functionalized with oligonucleotides and surface-modified with polyethylene glycol (PEG). AF4 separation provided full separation of the bioconjugates from the original AuNPs while P/Au and S/Au ICP-MS/MS ratios in the bioconjugate fractographic peaks could be used to compute the corresponding stoichiometries, oligonucleotide/AuNP and PEG/AuNPs. MALS detection clearly showed the coexistence of two distinct nanoparticulated populations in the bioconjugation mixture, which were demonstrated to be different not only in size but in functionality as well. The major bioconjugate population showed lower hydrodynamic ratios (18 nm) with higher and steadier oligonucleotides/AuNPs (92) and PEG/AuNPs (2350) stoichiometries, in comparison to the minor abundant population (54 nm, 51 and 1877, respectively). Moreover, the ratio between the absorbance signals measured at 520 nm and 650 nm reflects a lower AuNP aggregation in the major (10.5) than in the minor (4.5) population. Results obtained prove the benefits of a detailed characterization to find out if subsequent purification of functionalized AuNP-oligonucleotides is required to design more efficiently their final bioanalytical application.


Asunto(s)
Fraccionamiento de Campo-Flujo , Nanopartículas del Metal , Oro/química , Nanopartículas del Metal/química , Espectrometría de Masas en Tándem , Análisis Espectral , Fraccionamiento de Campo-Flujo/métodos , Tamaño de la Partícula
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...