Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 111
Filtrar
1.
Immunity ; 57(2): 256-270.e10, 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38354703

RESUMEN

Antibodies can block immune receptor engagement or trigger the receptor machinery to initiate signaling. We hypothesized that antibody agonists trigger signaling by sterically excluding large receptor-type protein tyrosine phosphatases (RPTPs) such as CD45 from sites of receptor engagement. An agonist targeting the costimulatory receptor CD28 produced signals that depended on antibody immobilization and were sensitive to the sizes of the receptor, the RPTPs, and the antibody itself. Although both the agonist and a non-agonistic anti-CD28 antibody locally excluded CD45, the agonistic antibody was more effective. An anti-PD-1 antibody that bound membrane proximally excluded CD45, triggered Src homology 2 domain-containing phosphatase 2 recruitment, and suppressed systemic lupus erythematosus and delayed-type hypersensitivity in experimental models. Paradoxically, nivolumab and pembrolizumab, anti-PD-1-blocking antibodies used clinically, also excluded CD45 and were agonistic in certain settings. Reducing these agonistic effects using antibody engineering improved PD-1 blockade. These findings establish a framework for developing new and improved therapies for autoimmunity and cancer.


Asunto(s)
Proteínas Tirosina Fosfatasas , Transducción de Señal , Proteínas Tirosina Fosfatasas/metabolismo , Antígenos CD28 , Receptores Inmunológicos
4.
Nature ; 625(7994): 321-328, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38200296

RESUMEN

Multiple sclerosis (MS) is a neuro-inflammatory and neurodegenerative disease that is most prevalent in Northern Europe. Although it is known that inherited risk for MS is located within or in close proximity to immune-related genes, it is unknown when, where and how this genetic risk originated1. Here, by using a large ancient genome dataset from the Mesolithic period to the Bronze Age2, along with new Medieval and post-Medieval genomes, we show that the genetic risk for MS rose among pastoralists from the Pontic steppe and was brought into Europe by the Yamnaya-related migration approximately 5,000 years ago. We further show that these MS-associated immunogenetic variants underwent positive selection both within the steppe population and later in Europe, probably driven by pathogenic challenges coinciding with changes in diet, lifestyle and population density. This study highlights the critical importance of the Neolithic period and Bronze Age as determinants of modern immune responses and their subsequent effect on the risk of developing MS in a changing environment.


Asunto(s)
Predisposición Genética a la Enfermedad , Genoma Humano , Pradera , Esclerosis Múltiple , Humanos , Conjuntos de Datos como Asunto , Dieta/etnología , Dieta/historia , Europa (Continente)/etnología , Predisposición Genética a la Enfermedad/historia , Genética Médica , Historia del Siglo XV , Historia Antigua , Historia Medieval , Migración Humana/historia , Estilo de Vida/etnología , Estilo de Vida/historia , Esclerosis Múltiple/genética , Esclerosis Múltiple/historia , Esclerosis Múltiple/inmunología , Enfermedades Neurodegenerativas/genética , Enfermedades Neurodegenerativas/historia , Enfermedades Neurodegenerativas/inmunología , Densidad de Población
5.
Nature ; 625(7994): 312-320, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38200293

RESUMEN

The Holocene (beginning around 12,000 years ago) encompassed some of the most significant changes in human evolution, with far-reaching consequences for the dietary, physical and mental health of present-day populations. Using a dataset of more than 1,600 imputed ancient genomes1, we modelled the selection landscape during the transition from hunting and gathering, to farming and pastoralism across West Eurasia. We identify key selection signals related to metabolism, including that selection at the FADS cluster began earlier than previously reported and that selection near the LCT locus predates the emergence of the lactase persistence allele by thousands of years. We also find strong selection in the HLA region, possibly due to increased exposure to pathogens during the Bronze Age. Using ancient individuals to infer local ancestry tracts in over 400,000 samples from the UK Biobank, we identify widespread differences in the distribution of Mesolithic, Neolithic and Bronze Age ancestries across Eurasia. By calculating ancestry-specific polygenic risk scores, we show that height differences between Northern and Southern Europe are associated with differential Steppe ancestry, rather than selection, and that risk alleles for mood-related phenotypes are enriched for Neolithic farmer ancestry, whereas risk alleles for diabetes and Alzheimer's disease are enriched for Western hunter-gatherer ancestry. Our results indicate that ancient selection and migration were large contributors to the distribution of phenotypic diversity in present-day Europeans.


Asunto(s)
Asiático , Pueblo Europeo , Genoma Humano , Selección Genética , Humanos , Afecto , Agricultura/historia , Alelos , Enfermedad de Alzheimer/genética , Asia/etnología , Asiático/genética , Diabetes Mellitus/genética , Europa (Continente)/etnología , Pueblo Europeo/genética , Agricultores/historia , Sitios Genéticos/genética , Predisposición Genética a la Enfermedad , Genoma Humano/genética , Historia Antigua , Migración Humana , Caza/historia , Familia de Multigenes/genética , Fenotipo , Biobanco del Reino Unido , Herencia Multifactorial/genética
6.
EBioMedicine ; 97: 104840, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37863021

RESUMEN

JAK inhibitors impact multiple cytokine pathways simultaneously, enabling high efficacy in treating complex diseases such as cancers and immune-mediated disorders. However, their broad reach also poses safety concerns, which have fuelled a demand for increasingly selective JAK inhibitors. Deucravacitinib, a first-in-class allosteric TYK2 inhibitor, represents a remarkable advancement in the field. Rather than competing at kinase domain catalytic sites as classical JAK1-3 inhibitors, deucravacitinib targets the regulatory pseudokinase domain of TYK2. It strikingly mirrors the functional effect of an evolutionary conserved naturally occurring TYK2 variant, P1104A, known to protect against multiple autoimmune diseases yet provide sufficient TYK2-mediated cytokine signalling required to prevent immune deficiency. The unprecedentedly high functional selectivity and efficacy-safety profile of deucravacitinib, initially demonstrated in psoriasis, combined with genetic support, and promising outcomes in early SLE clinical trials make this inhibitor ripe for exploration in other autoimmune diseases for which better, safe, and efficacious treatments are urgently needed.


Asunto(s)
Enfermedades Autoinmunes , Inhibidores de las Cinasas Janus , Psoriasis , Humanos , Inhibidores de las Cinasas Janus/farmacología , Inhibidores de las Cinasas Janus/uso terapéutico , TYK2 Quinasa/genética , Enfermedades Autoinmunes/tratamiento farmacológico , Citocinas , Psoriasis/tratamiento farmacológico , Janus Quinasa 1/genética , Janus Quinasa 1/metabolismo
7.
Artículo en Inglés | MEDLINE | ID: mdl-36411077

RESUMEN

BACKGROUND AND OBJECTIVES: Acute inflammatory CNS diseases include neuromyelitis optica spectrum disorders (NMOSDs) and myelin oligodendrocyte glycoprotein antibody-associated disease (MOGAD). Both MOGAD and acute disseminated encephalomyelitis (ADEM) have been reported after vaccination. Consequently, the mass SARS-CoV-2 vaccination program could result in increased rates of these conditions. We described the features of patients presenting with new acute CNS demyelination resembling NMOSDs or MOGAD within 8 weeks of SARS-CoV-2 vaccination. METHODS: The study included a prospective case series of patients referred to highly specialized NMOSD services in the UK from the introduction of SARS-CoV-2 vaccination program up to May 2022. Twenty-five patients presented with new optic neuritis (ON) and/or transverse myelitis (TM) ± other CNS inflammation within 8 weeks of vaccination with either AstraZeneca (ChAdOx1S) or Pfizer (BNT162b2) vaccines. Their clinical records and paraclinical investigations including MRI scans were reviewed. Serologic testing for antibodies to myelin oligodendrocyte glycoprotein (MOG) and aquaporin 4 (AQP4) was performed using live cell-based assays. Patients' outcomes were graded good, moderate, or poor based on the last clinical assessment. RESULTS: Of 25 patients identified (median age 38 years, 14 female), 12 (48%) had MOG antibodies (MOGIgG+), 2 (8%) had aquaporin 4 antibodies (AQP4IgG+), and 11 (44%) had neither. Twelve of 14 (86%) antibody-positive patients received the ChAdOx1S vaccine. MOGIgG+ patients presented most commonly with TM (10/12, 83%), frequently in combination with ADEM-like brain/brainstem lesions (6/12, 50%). Transverse myelitis was longitudinally extensive in 7 of the 10 patients. A peak in new MOGAD cases in Spring 2021 was attributable to postvaccine cases. Both AQP4IgG+ patients presented with brain lesions and TM. Four of 6 (67%) seronegative ChAdOx1S recipients experienced longitudinally extensive TM (LETM) compared with 1 of 5 (20%) of the BNT162b2 group, and facial nerve inflammation was reported only in ChAdOx1S recipients (2/5, 40%). Guillain-Barre syndrome was confirmed in 1 seronegative ChAdOx1S recipient and suspected in another. DISCUSSION: ChAdOx1S was associated with 12/14 antibody-positive cases, the majority MOGAD. MOGAD patients presented atypically, only 2 with isolated ON (1 after BNT162b2 vaccine) but with frequent ADEM-like brain lesions and LETM. Within the seronegative group, phenotypic differences were observed between ChAdOx1S and BNT162b2 recipients. These observations might support a causative role of the ChAdOx1S vaccine in inflammatory CNS disease and particularly MOGAD. Further study of this cohort could provide insights into vaccine-associated immunopathology.


Asunto(s)
COVID-19 , Encefalomielitis Aguda Diseminada , Mielitis Transversa , Neuromielitis Óptica , Neuritis Óptica , Femenino , Humanos , Glicoproteína Mielina-Oligodendrócito , Acuaporina 4 , Mielitis Transversa/etiología , Vacunas contra la COVID-19/efectos adversos , SARS-CoV-2 , Vacuna BNT162 , COVID-19/prevención & control , Sistema Nervioso Central , Encefalomielitis Aguda Diseminada/etiología , Vacunación/efectos adversos , Inflamación
8.
Nat Commun ; 13(1): 4398, 2022 07 29.
Artículo en Inglés | MEDLINE | ID: mdl-35906236

RESUMEN

Fetal growth restriction (FGR) affects 5-10% of pregnancies, and can have serious consequences for both mother and child. Prevention and treatment are limited because FGR pathogenesis is poorly understood. Genetic studies implicate KIR and HLA genes in FGR, however, linkage disequilibrium, genetic influence from both parents, and challenges with investigating human pregnancies make the risk alleles and their functional effects difficult to map. Here, we demonstrate that the interaction between the maternal KIR2DL1, expressed on uterine natural killer (NK) cells, and the paternally inherited HLA-C*0501, expressed on fetal trophoblast cells, leads to FGR in a humanized mouse model. We show that the KIR2DL1 and C*0501 interaction leads to pathogenic uterine arterial remodeling and modulation of uterine NK cell function. This initial effect cascades to altered transcriptional expression and intercellular communication at the maternal-fetal interface. These findings provide mechanistic insight into specific FGR risk alleles, and provide avenues of prevention and treatment.


Asunto(s)
Retardo del Crecimiento Fetal , Trofoblastos , Animales , Comunicación Celular/genética , Femenino , Retardo del Crecimiento Fetal/genética , Retardo del Crecimiento Fetal/metabolismo , Feto/metabolismo , Antígenos HLA-C/genética , Antígenos HLA-C/metabolismo , Ratones , Embarazo , Trofoblastos/metabolismo
9.
Nat Neurosci ; 25(7): 944-955, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35726057

RESUMEN

Progressive multiple sclerosis (MS) is characterized by unrelenting neurodegeneration, which causes cumulative disability and is refractory to current treatments. Drug development to prevent disease progression is an urgent clinical need yet is constrained by an incomplete understanding of its complex pathogenesis. Using spatial transcriptomics and proteomics on fresh-frozen human MS brain tissue, we identified multicellular mechanisms of progressive MS pathogenesis and traced their origin in relation to spatially distributed stages of neurodegeneration. By resolving ligand-receptor interactions in local microenvironments, we discovered defunct trophic and anti-inflammatory intercellular communications within areas of early neuronal decline. Proteins associated with neuronal damage in patient samples showed mechanistic concordance with published in vivo knockdown and central nervous system (CNS) disease models, supporting their causal role and value as potential therapeutic targets in progressive MS. Our findings provide a new framework for drug development strategies, rooted in an understanding of the complex cellular and signaling dynamics in human diseased tissue that facilitate this debilitating disease.


Asunto(s)
Enfermedades del Sistema Nervioso Central , Esclerosis Múltiple , Enfermedades del Sistema Nervioso Central/complicaciones , Progresión de la Enfermedad , Humanos , Esclerosis Múltiple/patología , Neuronas/metabolismo , Proteómica
10.
Nat Rev Immunol ; 22(12): 734-750, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35508809

RESUMEN

Our incomplete understanding of the causes and pathways involved in the onset and progression of multiple sclerosis (MS) limits our ability to effectively treat this complex neurological disease. Recent studies explore the role of immune cells at different stages of MS and how they interact with cells of the central nervous system (CNS). The findings presented here begin to question the exclusivity of an antigen-specific cause and highlight how seemingly distinct immune cell types can share common functions that drive disease. Innovative techniques further expose new disease-associated immune cell populations and reinforce how environmental context is critical to their phenotype and subsequent role in disease. Importantly, the differentiation of immune cells into a pathogenic state is potentially reversible through therapeutic manipulation. As such, understanding the mechanisms that provide plasticity to causal cell types is likely key to uncoupling these disease processes and may identify novel therapeutic targets that replace the need for cell ablation.


Asunto(s)
Esclerosis Múltiple , Humanos , Fenotipo
11.
Cell Rep ; 38(9): 110449, 2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35235807

RESUMEN

Cytotoxic T lymphocyte (CTL) and natural killer (NK) cell responses to a single optimal 10-mer epitope (KK10) in the human immunodeficiency virus type-1 (HIV-1) protein p24Gag are associated with enhanced immune control in patients expressing human leukocyte antigen (HLA)-B∗27:05. We find that proteasomal activity generates multiple length variants of KK10 (4-14 amino acids), which bind TAP and HLA-B∗27:05. However, only epitope forms ≥8 amino acids evoke peptide length-specific and cross-reactive CTL responses. Structural analyses reveal that all epitope forms bind HLA-B∗27:05 via a conserved N-terminal motif, and competition experiments show that the truncated epitope forms outcompete immunogenic epitope forms for binding to HLA-B∗27:05. Common viral escape mutations abolish (L136M) or impair (R132K) production of KK10 and longer epitope forms. Peptide length influences how well the inhibitory NK cell receptor KIR3DL1 binds HLA-B∗27:05 peptide complexes and how intraepitope mutations affect this interaction. These results identify a viral escape mechanism from CTL and NK responses based on differential antigen processing and peptide competition.


Asunto(s)
Infecciones por VIH , VIH-1 , Secuencia de Aminoácidos , Aminoácidos , Presentación de Antígeno , Epítopos de Linfocito T , Antígenos HLA-B/genética , Humanos , Péptidos
12.
Curr Biol ; 32(8): 1812-1821.e4, 2022 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-35316652

RESUMEN

Ingested nutrients are proposed to control mammalian behavior by modulating the activity of hypothalamic orexin/hypocretin neurons (HONs). Previous in vitro studies showed that nutrients ubiquitous in mammalian diets, such as non-essential amino acids (AAs) and glucose, modulate HONs in distinct ways. Glucose inhibits HONs, whereas non-essential (but not essential) AAs activate HONs. The latter effect is of particular interest because its purpose is unknown. Here, we show that ingestion of a dietary-relevant mix of non-essential AAs activates HONs and shifts behavior from eating to exploration. These effects persisted despite ablation of a key neural gut → brain communication pathway, the cholecystokinin-sensitive vagal afferents. The behavioral shift induced by the ingested non-essential AAs was recapitulated by targeted HON optostimulation and abolished in mice lacking HONs. Furthermore, lick microstructure analysis indicated that intragastric non-essential AAs and HON optostimulation each reduce the size, but not the frequency, of consumption bouts, thus implicating food palatability modulation as a mechanism for the eating suppression. Collectively, these results suggest that a key purpose of HON activation by ingested, non-essential AAs is to suppress eating and re-initiate food seeking. We propose and discuss possible evolutionary advantages of this, such as optimizing the limited stomach capacity for ingestion of essential nutrients.


Asunto(s)
Encéfalo , Hipotálamo , Aminoácidos/metabolismo , Animales , Encéfalo/fisiología , Ingestión de Alimentos/fisiología , Glucosa/metabolismo , Hipotálamo/metabolismo , Mamíferos , Ratones , Neuronas/fisiología , Orexinas/metabolismo
14.
Med ; 2(3): 296-312.e8, 2021 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-33748804

RESUMEN

BACKGROUND: Multiple sclerosis (MS), an autoimmune disease of the central nervous system (CNS), can be suppressed in its early stages but eventually becomes clinically progressive and unresponsive to therapy. Here, we investigate whether the therapeutic resistance of progressive MS can be attributed to chronic immune cell accumulation behind the blood-brain barrier (BBB). METHODS: We systematically track CNS-homing immune cells in the peripheral blood of 31 MS patients and 31 matched healthy individuals in an integrated analysis of 497,705 single-cell transcriptomes and 355,433 surface protein profiles from 71 samples. Through spatial RNA sequencing, we localize these cells in post mortem brain tissue of 6 progressive MS patients contrasted against 4 control brains (20 samples, 85,000 spot transcriptomes). FINDINGS: We identify a specific pathogenic CD161+/lymphotoxin beta (LTB)+ T cell population that resides in brains of progressive MS patients. Intriguingly, our data suggest that the colonization of the CNS by these T cells may begin earlier in the disease course, as they can be mobilized to the blood by usage of the integrin-blocking antibody natalizumab in relapsing-remitting MS patients. CONCLUSIONS: As a consequence, we lay the groundwork for a therapeutic strategy to deplete CNS-homing T cells before they can fuel treatment-resistant progression. FUNDING: This study was supported by funding from the University Medical Center Hamburg-Eppendorf, the Stifterverband für die Deutsche Wissenschaft, the OAK Foundation, Medical Research Council UK, and Wellcome.


Asunto(s)
Esclerosis Múltiple Crónica Progresiva , Esclerosis Múltiple Recurrente-Remitente , Esclerosis Múltiple , Sistema Nervioso Central/patología , Humanos , Esclerosis Múltiple/tratamiento farmacológico , Esclerosis Múltiple Crónica Progresiva/tratamiento farmacológico , Esclerosis Múltiple Recurrente-Remitente/tratamiento farmacológico , Natalizumab/uso terapéutico , Linfocitos T/patología
15.
Commun Biol ; 4(1): 57, 2021 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-33420318

RESUMEN

The RNA integrity number (RIN) is a frequently used quality metric to assess the completeness of rRNA, as a proxy for the corresponding mRNA in a tissue. Current methods operate at bulk resolution and provide a single average estimate for the whole sample. Spatial transcriptomics technologies have emerged and shown their value by placing gene expression into a tissue context, resulting in transcriptional information from all tissue regions. Thus, the ability to estimate RNA quality in situ has become of utmost importance to overcome the limitation with a bulk rRNA measurement. Here we show a new tool, the spatial RNA integrity number (sRIN) assay, to assess the rRNA completeness in a tissue wide manner at cellular resolution. We demonstrate the use of sRIN to identify spatial variation in tissue quality prior to more comprehensive spatial transcriptomics workflows.


Asunto(s)
ARN Mensajero/análisis , Análisis Espacial , Transcriptoma , Línea Celular Tumoral , Humanos
16.
Eur J Immunol ; 51(4): 1002-1005, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33368209

RESUMEN

We created a TCR transgenic mouse with CD4+ T cells recognizing the immunodominant DQ2.5-glia-ω2 gluten epitope. We show that these cells respond to deamidated gluten feed in vivo and compare them to previously published α2- and γ1-specific mice. These mice may help enlighten key aspects of celiac disease pathogenesis.


Asunto(s)
Glútenes/genética , Antígenos HLA-DQ/genética , Epítopos Inmunodominantes/genética , Receptores de Antígenos de Linfocitos T/genética , Animales , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/metabolismo , Enfermedad Celíaca/genética , Enfermedad Celíaca/inmunología , Modelos Animales de Enfermedad , Glútenes/inmunología , Antígenos HLA-DQ/inmunología , Humanos , Epítopos Inmunodominantes/inmunología , Ratones , Ratones Transgénicos , Receptores de Antígenos de Linfocitos T/inmunología
17.
Mult Scler ; 26(10): 1261-1264, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32762494

RESUMEN

Approximately 200,000 multiple sclerosis (MS) patients worldwide receive B-cell-depleting immunotherapy with rituximab (anti-CD20), which eliminates the ability to generate an antibody response to new infections. As severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-specific antibodies might help viral clearance, these patients could be at risk of severe complications if infected. Here, we report on an MS patient who had received rituximab for ~3 years. The patient was examined 5 days before the onset of coronavirus disease 2019 (COVID-19) symptoms and was admitted to the hospital 2 days after. She recovered 14 days after symptom onset despite having a 0% B lymphocyte count and not developing SARS-CoV-2 immunoglobulin G (IgG) antibodies.


Asunto(s)
Linfocitos B/inmunología , Linfocitos T CD4-Positivos/inmunología , Infecciones por Coronavirus/inmunología , Inmunidad Celular/inmunología , Células Asesinas Naturales/inmunología , Esclerosis Múltiple Crónica Progresiva/tratamiento farmacológico , Neumonía Viral/inmunología , Rituximab/uso terapéutico , Betacoronavirus , Relación CD4-CD8 , COVID-19 , Infecciones por Coronavirus/complicaciones , Infecciones por Coronavirus/fisiopatología , Progresión de la Enfermedad , Femenino , Humanos , Recuento de Linfocitos , Persona de Mediana Edad , Esclerosis Múltiple Crónica Progresiva/complicaciones , Pandemias , Neumonía Viral/complicaciones , Neumonía Viral/fisiopatología , SARS-CoV-2
18.
Cell Death Dis ; 11(5): 303, 2020 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-32358523

RESUMEN

Mixed lineage kinase domain-like (MLKL) is the main executor of necroptosis, an inflammatory form of programmed cell death. Necroptosis is implicated in combating infections, but also in contributing to numerous other clinical conditions, including cardiovascular diseases and neurodegenerative disorders. Inhibition of necroptosis is therefore of therapeutic interest. Here we report two siblings both of whom over the course of 35 years developed a similar progressive, neurodegenerative spectrum disorder characterized by paresis, ataxia and dysarthria. Magnetic resonance imaging of their central nervous system (CNS) revealed severe global cerebral volume loss and atrophy of the cerebellum and brainstem. These brothers are homozygous for a rare haplotype identified by whole genome sequencing carrying a frameshift variant in MLKL, as well as an in-frame deletion of one amino acid in the adjacent fatty acid 2-hydroxylase (FA2H) gene. Functional studies of patient-derived primary cells demonstrated that the variant in MLKL leads to a deficiency of MLKL protein resulting in impairment of necroptosis. Conversely, shotgun lipidomic analysis of the variant in FA2H shows no impact on either the abundance or the enzymatic activity of the encoded hydroxylase. To our knowledge, this is the first report of complete necroptosis deficiency in humans. The findings may suggest that impaired necroptosis is a novel mechanism of neurodegeneration, promoting a disorder that shares some clinical features with primary progressive multiple sclerosis (PPMS) and other neurodegenerative diseases. Importantly, the necroptotic deficiency does not cause symptoms outside the nervous system, nor does it confer susceptibility to infections. Given the current interest in pharmacological inhibition of necroptosis by targeting MLKL and its associated pathways, this strategy should be developed with caution, with careful consideration of the possible development of adverse neurological effects.


Asunto(s)
Apoptosis/genética , Necroptosis/genética , Enfermedades Neurodegenerativas/patología , Proteínas Quinasas/deficiencia , Animales , Apoptosis/fisiología , Humanos , Quinasas Quinasa Quinasa PAM/genética , Quinasas Quinasa Quinasa PAM/metabolismo , Enfermedades Neurodegenerativas/genética , Enfermedades Neurodegenerativas/metabolismo , Fosforilación , Proteínas Quinasas/metabolismo , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo
19.
Proc Natl Acad Sci U S A ; 117(23): 12952-12960, 2020 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-32457139

RESUMEN

Effective biomarkers for multiple sclerosis diagnosis, assessment of prognosis, and treatment responses, in particular those measurable in blood, are largely lacking. We have investigated a broad set of protein biomarkers in cerebrospinal fluid (CSF) and plasma using a highly sensitive proteomic immunoassay. Cases from two independent cohorts were compared with healthy controls and patients with other neurological diseases. We identified and replicated 10 cerebrospinal fluid proteins including IL-12B, CD5, MIP-1a, and CXCL9 which had a combined diagnostic efficacy similar to immunoglobulin G (IgG) index and neurofilament light chain (area under the curve [AUC] = 0.95). Two plasma proteins, OSM and HGF, were also associated with multiple sclerosis in comparison to healthy controls. Sensitivity and specificity of combined CSF and plasma markers for multiple sclerosis were 85.7% and 73.5%, respectively. In the discovery cohort, eotaxin-1 (CCL11) was associated with disease duration particularly in patients who had secondary progressive disease (PCSF < 4 × 10-5, Pplasma < 4 × 10-5), and plasma CCL20 was associated with disease severity (P = 4 × 10-5), although both require further validation. Treatment with natalizumab and fingolimod showed different compartmental changes in protein levels of CSF and peripheral blood, respectively, including many disease-associated markers (e.g., IL12B, CD5) showing potential application for both diagnosing disease and monitoring treatment efficacy. We report a number of multiple sclerosis biomarkers in CSF and plasma for early disease detection and potential indicators for disease activity. Of particular importance is the set of markers discovered in blood, where validated biomarkers are lacking.


Asunto(s)
Quimiocina CCL11/análisis , Quimiocina CCL20/sangre , Inflamación/inmunología , Esclerosis Múltiple/diagnóstico , Adulto , Biomarcadores/sangre , Biomarcadores/líquido cefalorraquídeo , Estudios de Casos y Controles , Quimiocina CCL11/inmunología , Quimiocina CCL20/inmunología , Estudios de Cohortes , Femenino , Humanos , Inflamación/sangre , Inflamación/líquido cefalorraquídeo , Masculino , Persona de Mediana Edad , Esclerosis Múltiple/sangre , Esclerosis Múltiple/líquido cefalorraquídeo , Esclerosis Múltiple/inmunología , Pronóstico , Proteómica , Reproducibilidad de los Resultados , Índice de Severidad de la Enfermedad , Adulto Joven
20.
Cell ; 181(1): 63-80, 2020 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-32243797

RESUMEN

Autoimmune diseases are a result of the immune system being misdirected toward its host and have major and increasing unmet clinical needs. In general, present therapies are broadly acting and non-disease specific; consequently, they are associated with numerous side effects. Precise and early intervention strategies are urgently needed. We highlight the challenges, progress, and prospects in achieving these goals.


Asunto(s)
Enfermedades Autoinmunes/inmunología , Enfermedades Autoinmunes/terapia , Inmunosupresores/uso terapéutico , Inmunoterapia/métodos , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...