Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Sci Technol Adv Mater ; 25(1): 2313957, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38444591

RESUMEN

The fillers inside a polymer matrix should typically be self-assembled in both the horizontal and vertical directions to obtain 3-dimentional (3D) percolation pathways, whereby the fields of application can be expanded and the properties of organic-inorganic composite films improved. Conventional dielectrophoresis techniques can typically only drive fillers to self-assemble in only one direction. We have devised a one-step dielectrophoresis-driven approach that effectively induces fillers self-assembly along two orthogonal axes, which results in the formation of 3D interconnected T-shaped iron microstructures (3D-T CIP) inside a polymer matrix. This approach to carbonyl iron powder (CIP) embedded in a polymer matrix results in a linear structure along the thickness direction and a network structure on the top surface of the film. The fillers in the polymer were controlled to achieve orthogonal bidirectional self-assembly using an external alternating current (AC) electric field and a non-contact technique that did not lead to electrical breakdown. The process of 3D-T CIP formation was observed in real time using in situ observation methods with optical microscopy, and the quantity and quality of self-assembly were characterized using statistical and fractal analysis. The process of fillers self-assembly along the direction perpendicular to the electric field was explained by finite element analogue simulations, and the results indicated that the insulating polyethylene terephthalate (PET) film between the electrode and the CIP/prepolymer suspension was the key to the formation of the 3D-T CIP. In contrast to the traditional two-step method of fabricating sandwich-structured film, the fabricated 3D-T CIP film with 3D electrically conductive pathways can be applied as magnetic field sensor.


A one-step electric field-induced self-assembly method was developed to efficiently control the self-assembly of fillers along two orthogonal axes to form three-dimensional interconnected T-shaped microstructure assembles of carbonyl iron powder inside a polymer matrix.

2.
Dev Cell ; 44(6): 694-708.e7, 2018 03 26.
Artículo en Inglés | MEDLINE | ID: mdl-29503157

RESUMEN

The peripheral protein quality control (QC) system removes non-native membrane proteins, including ΔF508-CFTR, the most common CFTR mutant in cystic fibrosis (CF), from the plasma membrane (PM) for lysosomal degradation by ubiquitination. It remains unclear how unfolded membrane proteins are recognized and targeted for ubiquitination and how they are removed from the apical PM. Using comprehensive siRNA screens, we identified RFFL, an E3 ubiquitin (Ub) ligase that directly and selectively recognizes unfolded ΔF508-CFTR through its disordered regions. RFFL retrieves the unfolded CFTR from the PM for lysosomal degradation by chaperone-independent K63-linked poly-ubiquitination. RFFL ablation enhanced the functional expression of cell-surface ΔF508-CFTR in the presence of folding corrector molecules, and this effect was further improved by inhibiting the Hsc70-dependent ubiquitination machinery. We propose that multiple peripheral QC mechanisms evolved to dispose of non-native PM proteins and to preserve cellular proteostasis, even at the cost of eliminating partially functional polypeptides.


Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Fibrosis Quística/metabolismo , Chaperonas Moleculares , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina/metabolismo , Membrana Celular/metabolismo , Células Cultivadas , Fibrosis Quística/genética , Fibrosis Quística/patología , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Células Epiteliales/metabolismo , Técnicas de Silenciamiento del Gen , Humanos , Lisosomas/metabolismo , Mutación , Proteolisis , ARN Interferente Pequeño/genética , Ubiquitinación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA