Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 123
Filtrar
1.
Chem Pharm Bull (Tokyo) ; 72(7): 711-730, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39085079

RESUMEN

Although opioid analgesics are indispensable in treating pain, these drugs are accompanied by life-threatening side effects. While clinically relevant opioid drugs target the µ opioid receptor (MOR), a heterodimer between the MOR and the δ opioid receptor (DOR) has emerged as another target to develop safer analgesics. Although some heterodimer-preferring agonists have been reported so far, it is still difficult to activate the MOR/DOR heterodimer selectively in the presence of MOR or DOR monomers/homodimers. To gain insights to develop selective agonists for MOR/DOR, herein we prepared analogs of CYM51010, one of the reported heterodimer-preferring agonists, and collected structure-activity relationship information. We found that the ethoxycarbonyl group was needed for the activity for the heterodimer, although this group could be substituted with functional groups with similar sizes, such as an ethoxycarbonyl group. As for the acetylaminophenyl group, not a type of substituent, but rather a substituent located at a specific position (para-position) was essential for the activity. Changing the linker length between the acetylaminophenyl group and the piperidine moiety also had deleterious effects on the activity. On the other hand, the substitution of the acetylamino group with a trifluoroacetylamino group and the substitution of the phenethyl group with a benzyl group diminished the activities for the monomers/homodimers while keeping the activity for MOR/DOR, which enhanced the selectivity. Our findings herein will play an important role in developing selective agonists for MOR/DOR and for elucidating the physiological roles of this heterodimer in analgesic processes and in the establishment of side effects.


Asunto(s)
Receptores Opioides delta , Receptores Opioides mu , Relación Estructura-Actividad , Receptores Opioides delta/agonistas , Receptores Opioides delta/metabolismo , Receptores Opioides mu/agonistas , Receptores Opioides mu/metabolismo , Humanos , Estructura Molecular , Animales , Analgésicos Opioides/química , Analgésicos Opioides/farmacología , Analgésicos Opioides/síntesis química , Relación Dosis-Respuesta a Droga , Cricetulus , Células CHO
2.
Int J Mol Sci ; 25(9)2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38732124

RESUMEN

Oxytocin, a significant pleiotropic neuropeptide, regulates psychological stress adaptation and social communication, as well as peripheral actions, such as uterine contraction and milk ejection. Recently, a Japanese Kampo medicine called Kamikihito (KKT) has been reported to stimulate oxytocin neurons to induce oxytocin secretion. Two-pore-domain potassium channels (K2P) regulate the resting potential of excitable cells, and their inhibition results in accelerated depolarization that elicits neuronal and endocrine cell activation. We assessed the effects of KKT and 14 of its components on a specific K2P, the potassium channel subfamily K member 2 (TREK-1), which is predominantly expressed in oxytocin neurons in the central nervous system (CNS). KKT inhibited the activity of TREK-1 induced via the channel activator ML335. Six of the 14 components of KKT inhibited TREK-1 activity. Additionally, we identified that 22 of the 41 compounds in the six components exhibited TREK-1 inhibitory effects. In summary, several compounds included in KKT partially activated oxytocin neurons by inhibiting TREK-1. The pharmacological effects of KKT, including antistress effects, may be partially mediated through the oxytocin pathway.


Asunto(s)
Neuronas , Oxitocina , Canales de Potasio de Dominio Poro en Tándem , Animales , Humanos , Ratones , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/química , Medicina Kampo , Neuronas/metabolismo , Neuronas/efectos de los fármacos , Oxitocina/farmacología , Oxitocina/metabolismo , Canales de Potasio de Dominio Poro en Tándem/metabolismo , Canales de Potasio de Dominio Poro en Tándem/antagonistas & inhibidores
3.
J Clin Med ; 13(2)2024 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-38276114

RESUMEN

The δ opioid receptor (DOR) inverse agonist has been demonstrated to improve learning and memory impairment in mice subjected to restraint stress. Here, we investigated the effects of SYK-623, a new DOR inverse agonist, on behavioral, immunohistochemical, and biochemical abnormalities in a mouse model of imipramine treatment-resistant depression. Male ddY mice received daily treatment of adrenocorticotropic hormone (ACTH) combined with chronic mild stress exposure (ACMS). SYK-623, imipramine, or the vehicle was administered once daily before ACMS. After three weeks, ACMS mice showed impaired learning and memory in the Y-maze test and increased immobility time in the forced swim test. SYK-623, but not imipramine, significantly suppressed behavioral abnormalities caused by ACMS. Based on the fluorescent immunohistochemical analysis of the hippocampus, ACMS induced a reduction in astrocytes and newborn neurons, similar to the reported findings observed in the postmortem brains of depressed patients. In addition, the number of parvalbumin-positive GABA neurons, which play a crucial role in neurogenesis, was reduced in the hippocampus, and western blot analysis showed decreased glutamic acid decarboxylase protein levels. These changes, except for the decrease in astrocytes, were suppressed by SYK-623. Thus, SYK-623 mitigates behavioral abnormalities and disturbed neurogenesis caused by chronic stress.

4.
Molecules ; 28(19)2023 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-37836768

RESUMEN

In medicinal chemistry, the copper-catalyzed click reaction is used to prepare ligand candidates. This reaction is so clean that the bioactivities of the products can be determined without purification. Despite the advantages of this in situ screening protocol, the applicability of this method for transmembrane proteins has not been validated due to the incompatibility with copper catalysts. To address this point, we performed ligand screening for the µ, δ, and κ opioid receptors using this protocol. As we had previously reported the 7-azanorbornane skeleton as a privileged scaffold for the G protein-coupled receptors, we performed the click reactions between various 7-substituted 2-ethynyl-7-azanorbornanes and azides. Screening assays were performed without purification using the CellKeyTM system, and the putative hit compounds were re-synthesized and re-evaluated. Although the "hit" compounds for the µ and the δ receptors were totally inactive after purifications, three of the four "hits" for the κ receptor were true agonists for this receptor and also showed activities for the δ receptor. Although false positive/negative results exist as in other screening projects for soluble proteins, this in situ method is effective in identifying novel ligands for transmembrane proteins.


Asunto(s)
Cobre , Receptores Opioides kappa , Receptores Opioides kappa/metabolismo , Ligandos , Proteínas de la Membrana , Receptores Opioides mu/metabolismo , Analgésicos Opioides/química
5.
J Pharmacol Sci ; 151(3): 135-141, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36828615

RESUMEN

Previous pharmacological data have shown the possible existence of functional interactions between µ- (MOP), κ- (KOP), and δ-opioid receptors (DOP) in pain and mood disorders. We previously reported that MOP knockout (KO) mice exhibit a lower stress response compared with wildtype (WT) mice. Moreover, DOP agonists have been shown to exert antidepressant-like effects in numerous animal models. In the present study, the tail suspension test (TST) and forced swim test (FST) were used to examine the roles of MOP and DOP in behavioral despair. MOP-KO mice and WT mice were treated with KNT-127 (10 mg/kg), a selective DOP agonist. The results indicated a significant decrease in immobility time in the KNT-127 group compared with the saline group in all genotypes in both tests. In the saline groups, immobility time significantly decreased in MOP-KO mice compared with WT mice in both tests. In female MOP-KO mice, KNT-127 significantly decreased immobility time in the TST compared with WT mice. In male MOP-KO mice, however, no genotypic differences were found in the TST after either KNT-127 or saline treatment. Thus, at least in the FST and TST, the activation of DOP and absence of MOP had additive effects in reducing measures of behavioral despair, suggesting that effects on this behavior by DOP activation occur independently of MOP.


Asunto(s)
Morfinanos , Receptores Opioides mu , Masculino , Femenino , Ratones , Animales , Morfinanos/farmacología , Antidepresivos/farmacología , Analgésicos Opioides/farmacología , Dolor/tratamiento farmacológico
6.
Peptides ; 159: 170901, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36347314

RESUMEN

Positive allosteric modulators (PAMs) of G protein-coupled receptors (GPCRs) have drawn attention as novel drug candidates. PAMs can enhance the activities of endogenous agonists which are not only secreted at appropriate times and in parts of the body, but also are immediately metabolized. Therefore, they are expected to show fewer side effects than exogeneous orthosteric ligands. Recently, we have reported that oxytocin (OT) functioned as a PAM of the µ opioid receptor (MOR) which was one of the most potent targets for analgesics. OT is thus thought to be a useful compound for the development of novel analgesics. In this study, several OT analogs were synthesized and evaluated with an intact cell-based assay to investigate the crucial structures of OT for exerting the PAM activity. The assay results indicated that the cyclic structure formed by an intramolecular disulfide bond and the three C-terminal residues containing a small Gly residue of OT were essential for their function as a MOR-PAM. Intriguingly, two analogs having an amide or an ethylene tether instead of the intramolecular disulfide bridge did not have any PAM effects. The results suggested that the disulfide linkage of OT would be a key structure for exerting the PAM activity at the MOR.


Asunto(s)
Oxitocina , Receptores Opioides , Regulación Alostérica , Receptores Opioides mu/metabolismo , Relación Estructura-Actividad , Analgésicos
7.
Molecules ; 27(20)2022 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-36296658

RESUMEN

Opioid receptors (ORs) are classified into three types (µ, δ, and κ), and opioid analgesics are mainly mediated by µOR activation; however, their use is sometimes restricted by unfavorable effects. The selective κOR agonist nalfurafine was initially developed as an analgesic, but its indication was changed because of the narrow safety margin. The activation of ORs mainly induces two intracellular signaling pathways: a G-protein-mediated pathway and a ß-arrestin-mediated pathway. Recently, the expectations for κOR analgesics that selectively activate these pathways have increased; however, the structural properties required for the selectivity of nalfurafine are still unknown. Therefore, we evaluated the partial structures of nalfurafine that are necessary for the selectivity of these two pathways. We assayed the properties of nalfurafine and six nalfurafine analogs (SYKs) using cells stably expressing κORs. The SYKs activated κORs in a concentration-dependent manner with higher EC50 values than nalfurafine. Upon bias factor assessment, only SYK-309 (possessing the 3S-hydroxy group) showed higher selectivity of G-protein-mediated signaling activities than nalfurafine, suggesting the direction of the 3S-hydroxy group may affect the ß-arrestin-mediated pathway. In conclusion, nalfurafine analogs having a 3S-hydroxy group, such as SYK-309, could be considered G-protein-biased κOR agonists.


Asunto(s)
Analgésicos Opioides , Receptores Opioides kappa , Analgésicos , Analgésicos Opioides/farmacología , beta-Arrestinas/metabolismo , Proteínas de Unión al GTP/metabolismo , Receptores Opioides kappa/agonistas , Receptores Opioides mu/metabolismo
8.
Bioorg Med Chem ; 53: 116552, 2022 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-34894610

RESUMEN

The κ opioid receptor (KOR) is one of the promising targets to develop analgesics lacking morphine like side effects. To seek a novel KOR agonist we designed 6-amide derivatives with an oxabicyclo[3.2.1]octane structure based on a proposed active conformation of a selective KOR agonist nalfurafine. All the synthesized compounds strongly bound to the KOR and some compound showed KOR selectivities. 6R-Amides were more potent and efficacious KOR agonists than the corresponding 6S-isomers. However, most 6-amide derivatives were partial KOR agonist. Conformational analyses of 6R- and 6S-amide derivatives and nalfurafine well accounted for the difference of KOR agonistic activities between two diastereomers. Surprisingly, the tested N-H amides were full δ opioid receptor (DOR) agonists. Among the tested compounds 7a with benzamide moiety was the most potent dual DOR/KOR agonist. On the other hand, 6S-phenylacetamide 8b was potent full DOR agonist with less efficacious agonist activity for the µ receptor and KOR. 6-Amide derivatives with an oxabicyclo[3.2.1]octane structure were expected to be a promising fundamental skeleton for the dual DOR/KOR agonists and/or selective DOR agonists.


Asunto(s)
Analgésicos/farmacología , Morfinanos/farmacología , Receptores Opioides delta/agonistas , Receptores Opioides kappa/agonistas , Analgésicos/síntesis química , Analgésicos/química , Relación Dosis-Respuesta a Droga , Humanos , Estructura Molecular , Morfinanos/síntesis química , Morfinanos/química , Relación Estructura-Actividad
9.
Cells ; 10(10)2021 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-34685631

RESUMEN

Oxytocin (OT) influences various physiological functions such as uterine contractions, maternal/social behavior, and analgesia. Opioid signaling pathways are involved in one of the analgesic mechanisms of OT. We previously showed that OT acts as a positive allosteric modulator (PAM) and enhances µ-opioid receptor (MOR) activity. In this study, which focused on other opioid receptor (OR) subtypes, we investigated whether OT influences opioid signaling pathways as a PAM for δ-OR (DOR) or κ-OR (KOR) using human embryonic kidney-293 cells expressing human DOR or KOR, respectively. The CellKeyTM results showed that OT enhanced impedance induced by endogenous/exogenous KOR agonists on KOR-expressing cells. OT did not affect DOR activity induced by endogenous/exogenous DOR agonists. OT potentiated the KOR agonist-induced Gi/o protein-mediated decrease in intracellular cAMP, but did not affect the increase in KOR internalization caused by the KOR agonists dynorphin A and (-)-U-50488 hydrochloride (U50488). OT did not bind to KOR orthosteric binding sites and did not affect the binding affinities of dynorphin A and U50488 for KOR. These results suggest that OT is a PAM of KOR and MOR and enhances G protein signaling without affecting ß-arrestin signaling. Thus, OT has potential as a specific signaling-biased PAM of KOR.


Asunto(s)
Proteínas de Unión al GTP/metabolismo , Oxitocina/farmacología , Receptores Opioides delta/metabolismo , Receptores Opioides kappa/metabolismo , Transducción de Señal , 3,4-Dicloro-N-metil-N-(2-(1-pirrolidinil)-ciclohexil)-bencenacetamida, (trans)-Isómero/farmacología , Regulación Alostérica/efectos de los fármacos , Animales , Sitios de Unión , Células CHO , Cricetulus , AMP Cíclico/metabolismo , Diprenorfina/farmacología , Dinorfinas/farmacología , Impedancia Eléctrica , Endocitosis/efectos de los fármacos , Células HEK293 , Humanos , Concentración 50 Inhibidora , Receptores Opioides delta/agonistas , Receptores Opioides kappa/agonistas , Transducción de Señal/efectos de los fármacos
10.
Molecules ; 26(19)2021 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-34641621

RESUMEN

Activated opioid receptors transmit internal signals through two major pathways: the G-protein-mediated pathway, which exerts analgesia, and the ß-arrestin-mediated pathway, which leads to unfavorable side effects. Hence, G-protein-biased opioid agonists are preferable as opioid analgesics. Rubiscolins, the spinach-derived naturally occurring opioid peptides, are selective δ opioid receptor agonists, and their p.o. administration exhibits antinociceptive effects. Although the potency and effect of rubiscolins as G-protein-biased molecules are partially confirmed, their in vitro profiles remain unclear. We, therefore, evaluated the properties of rubiscolins, in detail, through several analyses, including the CellKeyTM assay, cADDis® cAMP assay, and PathHunter® ß-arrestin recruitment assay, using cells stably expressing µ, δ, κ, or µ/δ heteromer opioid receptors. In the CellKeyTM assay, rubiscolins showed selective agonistic effects for δ opioid receptor and little agonistic or antagonistic effects for µ and κ opioid receptors. Furthermore, rubiscolins were found to be G-protein-biased δ opioid receptor agonists based on the results obtained in cADDis® cAMP and PathHunter® ß-arrestin recruitment assays. Finally, we found, for the first time, that they are also partially agonistic for the µ/δ dimers. In conclusion, rubiscolins could serve as attractive seeds, as δ opioid receptor-specific agonists, for the development of novel opioid analgesics with reduced side effects.


Asunto(s)
Péptidos Opioides/farmacología , Receptores Opioides delta/agonistas , Transducción de Señal/efectos de los fármacos , Spinacia oleracea/química , Proteínas de Unión al GTP/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Células HEK293 , Humanos , Estructura Molecular , Péptidos Opioides/química , Fragmentos de Péptidos/química , Fragmentos de Péptidos/farmacología , Receptores Opioides mu/metabolismo , Ribulosa-Bifosfato Carboxilasa/química , Ribulosa-Bifosfato Carboxilasa/farmacología , beta-Arrestinas/metabolismo
11.
ChemMedChem ; 16(22): 3463-3476, 2021 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-34278724

RESUMEN

Ghrelin is a pleiotropic feeding hormone which also has a pivotal role in the central nervous system. Upon the activation of its receptor, growth hormone secretagogue receptor (GHSR), the Gαq/11 -mediated and the ß-arrestin-mediated signaling pathways are activated. As the ß-arrestin pathway is a potential drug target, there is a strong need for ß-arrestin-biased GHSR modulators. Activation of the ß-arrestin pathway should inhibit the Gαq/11 -mediated calcium flux through internalization of the receptor. Hence, we used the antagonistic activity in the calcium assay as the first screening for the ß-arrestin activation. By conducting the second screening assay for the ß-arrestin activation based on extracellular signal regulated kinase (ERK) 1/2 phosphorylation, we discovered a putative ß-arrestin-biased superagonist. The activity of the compound was not completely blocked with the competitive antagonist, which implies that the effect is mediated, at least partly, by allosteric binding of the compound.


Asunto(s)
Azidas/farmacología , Receptores de Ghrelina/química , beta-Arrestinas/agonistas , Azidas/síntesis química , Azidas/química , Humanos , Estructura Molecular , beta-Arrestinas/metabolismo
12.
Front Pharmacol ; 12: 695039, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35145397

RESUMEN

Several clinical studies have reported that Japanese herbal medicine Hangeshashinto (HST) has beneficial effects on chemotherapy-induced oral ulcerative mucositis (OUM). Our previous research demonstrated that HST improves chemotherapy-induced OUM through human oral keratinocyte (HOK) migration, which was suppressed by mitogen-activated protein kinase (MAPK) and C-X-C chemokine receptor 4 (CXCR4) inhibitors. However, the association between these molecules and HOK migration was unclear. Here, we examined the effects of HST on the expression of CXCR4/CXCR7 and C-X-C motif chemokine ligands 11 and 12 (CXCL11/CXCL12) in HOKs. Our results indicated that HST upregulated CXCL12, but not CXCR4, CXCR7, nor CXCL11 in HOKs. HST-induced expression of CXCL12 was significantly suppressed by an inhibitor of extracellular signal-regulated kinase (ERK), but not of p38 and c-Jun N-terminal kinase (JNK). In addition, HST induced phosphorylation of ERK in HOKs. These findings suggest that HST enhances HOK migration by upregulating CXCL12 via ERK.

13.
Chemistry ; 27(16): 5171-5179, 2021 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-33300620

RESUMEN

1,2,3,4-Tetrahydroquinolines should be applicable to the development of new pharmaceutical agents. A facile synthesis of 1,2,3,4-tetrahydroquinolines that is achieved by a photoinduced formal [4+2] cycloaddition reaction of acyclic α,ß-unsaturated amides and imides with N,N-dialkylanilines under visible-light irradiation, in which a new IrIII complex photosensitizer, a thiourea, and an oxidant act cooperatively in promoting the reaction, is reported. The photoreaction enables the synthesis of a wide variety of 1,2,3,4-tetrahydroquinolines, while controlling the trans/cis diastereoselectivity (>99:1) and constructing contiguous stereogenic centers. A chemoselective cleavage of an acyclic imide auxiliary is demonstrated.

16.
Curr Top Med Chem ; 20(31): 2866-2877, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32962616

RESUMEN

Since a µ-opioid receptor gene containing multiple exons has been identified, the variety of splice variants for µ-opioid receptors have been reported in various species. Amidino-TAPA and IBNtxA have been discovered as new analgesics with different pharmacological profiles from morphine. These new analgesics show a very potent analgesic effect but do not have dependence liability. Interestingly, these analgesics show the selectivity to the morphine-insensitive µ-opioid receptor splice variants. The splice variants, sensitive to these new analgesics but insensitive to morphine, may be a better molecular target to develop the analgesics without side effects.


Asunto(s)
Analgésicos Opioides/farmacología , Receptores Opioides mu/antagonistas & inhibidores , Empalme Alternativo/efectos de los fármacos , Empalme Alternativo/genética , Analgésicos Opioides/química , Humanos , Receptores Opioides mu/genética
17.
Molecules ; 25(17)2020 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-32825410

RESUMEN

We have recently reported that N-alkyl and N-acyl naltrindole (NTI) derivatives showed activities for the δ opioid receptor (DOR) ranging widely from full inverse agonists to full agonists. We newly designed sulfonamide-type NTI derivatives in order to investigate the effects of the N-substituent on the functional activities because the side chain and S=O part in the sulfonamide moiety located in spatially different positions compared with those in the alkylamine and amide moieties. Among the tested compounds, cyclopropylsulfonamide 9f (SYK-839) was the most potent full inverse agonist for the DOR, whereas phenethylsulfonamide 9e (SYK-901) showed full DOR agonist activity with moderate potency. These NTI derivatives are expected to be useful compounds for investigation of the molecular mechanism inducing these functional activities.


Asunto(s)
Naltrexona/análogos & derivados , Receptores Opioides delta/agonistas , Receptores Opioides delta/metabolismo , Animales , Células CHO , Cricetulus , Humanos , Naltrexona/síntesis química , Naltrexona/química , Naltrexona/farmacología , Receptores Opioides delta/genética
18.
Curr Top Med Chem ; 20(31): 2889-2902, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32238139

RESUMEN

The discovery of δ opioid receptor inverse agonist activity induced by ICI-174,864, which was previously reported as an δ opioid receptor antagonist, opened the door for the investigation of inverse agonism/constitutive activity of the receptors. Various peptidic or non-peptidic δ opioid receptor inverse agonists have since been developed. Compared with the reports dealing with in vitro inverse agonist activities of novel compounds or known compounds as antagonists, there have been almost no publications describing the in vivo pharmacological effects induced by a δ opioid receptor inverse agonist. After the observation of anorectic effects with the δ opioid receptor antagonism was discussed in the early 2000s, the short-term memory improving effects and antitussive effects have been very recently reported as possible pharmacological effects induced by a δ opioid receptor inverse agonist. In this review, we will survey the developed δ opioid receptor inverse agonists and summarize the possible in vivo pharmacological effects by δ opioid receptor inverse agonists. Moreover, we will discuss important issues involved in the investigation of the in vivo pharmacological effects produced by a δ opioid receptor inverse agonist.


Asunto(s)
Analgésicos Opioides/farmacología , Encefalina Leucina/análogos & derivados , Receptores Opioides delta/agonistas , Analgésicos Opioides/química , Encefalina Leucina/química , Encefalina Leucina/farmacología , Humanos
19.
Bioorg Med Chem Lett ; 30(12): 127176, 2020 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-32299730

RESUMEN

We have recently reported that the elaboration of the N-substituent in the δ opioid receptor (DOR) antagonist naltrindole (NTI) enabled the regulation of the DOR activities from full inverse agonists to weak partial agonists. The investigations of amide-type NTI derivatives revealed that N-phenylacetyl and N-dihydrocinnamoyl derivatives 3a and 3b were DOR full agonists. The same transformations were applied to a DOR agonist KNT-127 to provide the more potent DOR agonists 6a and 6b. Among the tested compounds, the most efficacious compound 6a showed dose-dependent antidepressant-like effects in the mouse forced swim test. The antidepressant-like effects by 6a seemed to be more potent than those of KNT-127, which is a more potent DOR agonist in in vitro assays. The amide-type compound like 6a may more fully penetrate into the central nervous system.


Asunto(s)
Antidepresivos/farmacología , Depresión/tratamiento farmacológico , Descubrimiento de Drogas , Receptores Opioides delta/agonistas , Animales , Antidepresivos/síntesis química , Antidepresivos/química , Conducta Animal/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ratones , Estructura Molecular , Relación Estructura-Actividad
20.
Front Nutr ; 7: 5, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32175325

RESUMEN

Cancer cachexia is highly prevalent in patients with progressive cancer and is characterized by decreased food consumption, and body weight. Japanese herbal medicine Ninjinyoeito (NYT), composed of 12 herbal crude drugs, is prescribed in Asian countries to improve several symptoms such as anorexia and fatigue, which are commonly observed in patients with cancer cachexia. However, the action mechanisms of NYT in improving anorexia or fatigue in patients with cancer are not clear. Therefore, in the present study, we examined the effects of NYT on the activities of several G-protein-coupled receptors (GPCRs), which activate hyperphagia signaling in the central nervous system, using an in vitro assay with the CellKey™ system, which detects the activation of GPCRs as a change in intracellular impedance (ΔZ). NYT increased the ΔZ of human embryonic kidney 293 (HEK293) cells expressing orexin 1 receptor (OX1R) and those expressing neuropeptide Y1 receptor (NPY1R) in a dose-dependent manner. On the contrary, NYT did not significantly increase the ΔZ of HEK293A cells expressing growth hormone secretagogue receptor (GHSR) and those expressing NPY5R. The selective OX1R antagonist SB674042 significantly decreased the NYT-induced increase in ΔZ in OX1R-expressing cells. Contrarily, the selective NPY1R antagonist BIBO3340 failed to inhibit the NPY-induced increase in ΔZ in NPY1R-expressing cells. Additionally, we prepared modified NYT excluding each one of the 12 herbal crude drugs in NYT and investigated the effects on the activity of OX1R. Among the 12 modified NYT formulations, the one without citrus unshiu peel failed to activate OX1R. A screening of each of the 12 herbal crude drugs showed that citrus unshiu peel significantly activated OX1R, which was significantly suppressed by SB674042. These finding suggest that NYT and citrus unshiu peel could increase food intake via activation of orexigenic OX1R-expressing neurons in the hypothalamus. This study provides scientific evidence to support the potential of NYT for cancer patients with anorexia.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...