Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
J Neurosci ; 41(45): 9374-9391, 2021 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-34645605

RESUMEN

Detection of statistical irregularities, measured as a prediction error response, is fundamental to the perceptual monitoring of the environment. We studied whether prediction error response is associated with neural oscillations or asynchronous broadband activity. Electrocorticography was conducted in three male monkeys, who passively listened to the auditory roving oddball stimuli. Local field potentials (LFPs) recorded over the auditory cortex underwent spectral principal component analysis, which decoupled broadband and rhythmic components of the LFP signal. We found that the broadband component captured the prediction error response, whereas none of the rhythmic components were associated with statistical irregularities of sounds. The broadband component displayed more stochastic, asymmetrical multifractal properties than the rhythmic components, which revealed more self-similar dynamics. We thus conclude that the prediction error response is captured by neuronal populations generating asynchronous broadband activity, defined by irregular dynamic states, which, unlike oscillatory rhythms, appear to enable the neural representation of auditory prediction error response.SIGNIFICANCE STATEMENT This study aimed to examine the contribution of oscillatory and asynchronous components of auditory local field potentials in the generation of prediction error responses to sensory irregularities, as this has not been directly addressed in the previous studies. Here, we show that mismatch negativity-an auditory prediction error response-is driven by the asynchronous broadband component of potentials recorded in the auditory cortex. This finding highlights the importance of nonoscillatory neural processes in the predictive monitoring of the environment. At a more general level, the study demonstrates that stochastic neural processes, which are often disregarded as neural noise, do have a functional role in the processing of sensory information.


Asunto(s)
Corteza Auditiva/fisiología , Percepción Auditiva/fisiología , Modelos Neurológicos , Estimulación Acústica/métodos , Animales , Callithrix , Electrocorticografía/métodos , Masculino
2.
Sci Adv ; 7(30)2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34290088

RESUMEN

We propose and empirically support a parsimonious account of intrinsic, brain-wide spatiotemporal organization arising from traveling waves linked to arousal. We hypothesize that these waves are the predominant physiological process reflected in spontaneous functional magnetic resonance imaging (fMRI) signal fluctuations. The correlation structure ("functional connectivity") of these fluctuations recapitulates the large-scale functional organization of the brain. However, a unifying physiological account of this structure has so far been lacking. Here, using fMRI in humans, we show that ongoing arousal fluctuations are associated with global waves of activity that slowly propagate in parallel throughout the neocortex, thalamus, striatum, and cerebellum. We show that these waves can parsimoniously account for many features of spontaneous fMRI signal fluctuations, including topographically organized functional connectivity. Last, we demonstrate similar, cortex-wide propagation of neural activity measured with electrocorticography in macaques. These findings suggest that traveling waves spatiotemporally pattern brain-wide excitability in relation to arousal.

3.
Neuron ; 108(6): 1075-1090.e6, 2020 12 23.
Artículo en Inglés | MEDLINE | ID: mdl-33080229

RESUMEN

Optogenetics has revolutionized neuroscience in small laboratory animals, but its effect on animal models more closely related to humans, such as non-human primates (NHPs), has been mixed. To make evidence-based decisions in primate optogenetics, the scientific community would benefit from a centralized database listing all attempts, successful and unsuccessful, of using optogenetics in the primate brain. We contacted members of the community to ask for their contributions to an open science initiative. As of this writing, 45 laboratories around the world contributed more than 1,000 injection experiments, including precise details regarding their methods and outcomes. Of those entries, more than half had not been published. The resource is free for everyone to consult and contribute to on the Open Science Framework website. Here we review some of the insights from this initial release of the database and discuss methodological considerations to improve the success of optogenetic experiments in NHPs.


Asunto(s)
Encéfalo , Neuronas , Optogenética/métodos , Primates , Animales , Neurociencias
4.
Brain Topogr ; 32(4): 550-568, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31209695

RESUMEN

Electrophysiological Source Imaging (ESI) is hampered by lack of "gold standards" for model validation. Concurrent electroencephalography (EEG) and electrocorticography (ECoG) experiments (EECoG) are useful for this purpose, especially primate models due to their flexibility and translational value for human research. Unfortunately, there is only one EECoG experiments in the public domain that we know of: the Multidimensional Recording (MDR) is based on a single monkey ( www.neurotycho.org ). The mining of this type of data is hindered by lack of specialized procedures to deal with: (1) Severe EECoG artifacts due to the experimental produces; (2) Sophisticated forward models that account for surgery induced skull defects and implanted ECoG electrode strips; (3) Reliable statistical procedures to estimate and compare source connectivity (partial correlation). We provide solutions to the processing issues just mentioned with EECoG-Comp: an open source platform ( https://github.com/Vincent-wq/EECoG-Comp ). EECoG lead fields calculated with FEM (Simbio) for MDR data are also provided and were used in other papers of this special issue. As a use case with the MDR, we show: (1) For real MDR data, 4 popular ESI methods (MNE, LCMV, eLORETA and SSBL) showed significant but moderate concordance with a usual standard, the ECoG Laplacian (standard partial [Formula: see text]); (2) In both monkey and human simulations, all ESI methods as well as Laplacian had a significant but poor correspondence with the true source connectivity. These preliminary results may stimulate the development of improved ESI connectivity estimators but require the availability of more EECoG data sets to obtain neurobiologically valid inferences.


Asunto(s)
Electroencefalografía/métodos , Artefactos , Electrocorticografía , Electrodos Implantados , Humanos
5.
Neuron ; 100(5): 1252-1266.e3, 2018 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-30482692

RESUMEN

According to predictive-coding theory, cortical areas continuously generate and update predictions of sensory inputs at different hierarchical levels and emit prediction errors when the predicted and actual inputs differ. However, predictions and prediction errors are simultaneous and interdependent processes, making it difficult to disentangle their constituent neural network organization. Here, we test the theory by using high-density electrocorticography (ECoG) in monkeys during an auditory "local-global" paradigm in which the temporal regularities of the stimuli were controlled at two hierarchical levels. We decomposed the broadband data and identified lower- and higher-level prediction-error signals in early auditory cortex and anterior temporal cortex, respectively, and a prediction-update signal sent from prefrontal cortex back to temporal cortex. The prediction-error and prediction-update signals were transmitted via γ (>40 Hz) and α/ß (<30 Hz) oscillations, respectively. Our findings provide strong support for hierarchical predictive coding and outline how it is dynamically implemented using distinct cortical areas and frequencies.


Asunto(s)
Corteza Auditiva/fisiología , Percepción Auditiva/fisiología , Macaca/fisiología , Modelos Neurológicos , Corteza Prefrontal/fisiología , Lóbulo Temporal/fisiología , Estimulación Acústica , Animales , Ondas Encefálicas , Electrocorticografía , Potenciales Evocados Auditivos , Masculino , Vías Nerviosas/fisiología , Factores de Tiempo
6.
Front Neurosci ; 11: 514, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28966573

RESUMEN

Optogenetics has potential applications in the study of epilepsy and neuroprostheses, and for studies on neural circuit dynamics. However, to achieve translation to clinical usage, optogenetic interfaces that are capable of chronic stimulation and monitoring with minimal brain trauma are required. We aimed to develop a chronically implantable device for photostimulation of the brain of non-human primates. We used a micro-light-emitting diode (LED) array with a flexible polyimide film. The array was combined with a whole-cortex electrocorticographic (ECoG) electrode array for simultaneous photostimulation and recording. Channelrhodopsin-2 (ChR2) was virally transduced into the cerebral cortex of common marmosets, and then the device was epidurally implanted into their brains. We recorded the neural activity during photostimulation of the awake monkeys for 4 months. The neural responses gradually increased after the virus injection for ~8 weeks and remained constant for another 8 weeks. The micro-LED and ECoG arrays allowed semi-invasive simultaneous stimulation and recording during long-term implantation in the brains of non-human primates. The development of this device represents substantial progress in the field of optogenetic applications.

7.
Neural Netw ; 93: 1-6, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28505599

RESUMEN

Blind source separation (BSS) algorithms extract neural signals from electroencephalography (EEG) data. However, it is difficult to quantify source separation performance because there is no criterion to dissociate neural signals and noise in EEG signals. This study develops a method for evaluating BSS performance. The idea is neural signals in EEG can be estimated by comparison with simultaneously measured electrocorticography (ECoG). Because the ECoG electrodes cover the majority of the lateral cortical surface and should capture most of the original neural sources in the EEG signals. We measured real EEG and ECoG data and developed an algorithm for evaluating BSS performance. First, EEG signals are separated into EEG components using the BSS algorithm. Second, the EEG components are ranked using the correlation coefficients of the ECoG regression and the components are grouped into subsets based on their ranks. Third, canonical correlation analysis estimates how much information is shared between the subsets of the EEG components and the ECoG signals. We used our algorithm to compare the performance of BSS algorithms (PCA, AMUSE, SOBI, JADE, fastICA) via the EEG and ECoG data of anesthetized nonhuman primates. The results (Best case >JADE = fastICA >AMUSE = SOBI ≥ PCA >random separation) were common to the two subjects. To encourage the further development of better BSS algorithms, our EEG and ECoG data are available on our Web site (http://neurotycho.org/) as a common testing platform.


Asunto(s)
Algoritmos , Mapeo Encefálico/métodos , Electroencefalografía/métodos , Procesamiento de Señales Asistido por Computador , Animales , Artefactos , Electrocorticografía/métodos , Macaca fascicularis , Macaca mulatta , Ruido
8.
PLoS One ; 11(3): e0150934, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26963915

RESUMEN

Under social conflict, monkeys develop hierarchical positions through social interactions. Once the hierarchy is established, the dominant monkey dominates the space around itself and the submissive monkey tries not to violate this space. Previous studies have shown the contributions of the frontal and parietal cortices in social suppression, but the contributions of other cortical areas to suppressive functions remain elusive. We recorded neural activity in large cortical areas using electrocorticographic (ECoG) arrays while monkeys performed a social food-grab task in which a target monkey was paired with either a dominant or a submissive monkey. If the paired monkey was dominant, the target monkey avoided taking food in the shared conflict space, but not in other areas. By contrast, when the paired monkey was submissive, the target monkey took the food freely without hesitation. We applied decoding analysis to the ECoG data to see when and which cortical areas contribute to social behavioral suppression. Neural information discriminating the social condition was more evident when the conflict space was set in the area contralateral to the recording hemisphere. We found that the information increased as the social pressure increased during the task. Before food presentation, when the pressure was relatively low, the parietal and somatosensory-motor cortices showed sustained discrimination of the social condition. After food presentation, when the monkey faced greater pressure to make a decision as to whether it should take the food, the prefrontal and visual cortices started to develop buildup responses. The social representation was found in a sustained form in the parietal and somatosensory-motor regions, followed by additional buildup form in the visual and prefrontal cortices. The representation was less influenced by reward expectation. These findings suggest that social adaptation is achieved by a higher-order self-regulation process (incorporating motor preparation/execution processes) in accordance with the embodied social contexts.


Asunto(s)
Conducta Animal/fisiología , Dominación-Subordinación , Electrocorticografía , Macaca/fisiología , Corteza Visual/fisiología , Animales , Femenino , Masculino
9.
PLoS Comput Biol ; 12(1): e1004654, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26796119

RESUMEN

Accumulating evidence indicates that the capacity to integrate information in the brain is a prerequisite for consciousness. Integrated Information Theory (IIT) of consciousness provides a mathematical approach to quantifying the information integrated in a system, called integrated information, Φ. Integrated information is defined theoretically as the amount of information a system generates as a whole, above and beyond the amount of information its parts independently generate. IIT predicts that the amount of integrated information in the brain should reflect levels of consciousness. Empirical evaluation of this theory requires computing integrated information from neural data acquired from experiments, although difficulties with using the original measure Φ precludes such computations. Although some practical measures have been previously proposed, we found that these measures fail to satisfy the theoretical requirements as a measure of integrated information. Measures of integrated information should satisfy the lower and upper bounds as follows: The lower bound of integrated information should be 0 and is equal to 0 when the system does not generate information (no information) or when the system comprises independent parts (no integration). The upper bound of integrated information is the amount of information generated by the whole system. Here we derive the novel practical measure Φ* by introducing a concept of mismatched decoding developed from information theory. We show that Φ* is properly bounded from below and above, as required, as a measure of integrated information. We derive the analytical expression of Φ* under the Gaussian assumption, which makes it readily applicable to experimental data. Our novel measure Φ* can generally be used as a measure of integrated information in research on consciousness, and also as a tool for network analysis on diverse areas of biology.


Asunto(s)
Estado de Conciencia/fisiología , Teoría de la Información , Modelos Neurológicos , Animales , Corteza Cerebral/fisiología , Biología Computacional , Electrocorticografía , Macaca , Distribución Normal
10.
Eur J Neurosci ; 43(4): 516-28, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26613160

RESUMEN

The event-related potential 'mismatch negativity' (MMN) is an indicator of a perceiver's ability to detect deviations in sensory signal streams. MMN and its homologue in animals, mismatch activity (MMA), are differential neural responses to a repeatedly presented stimulus and a subsequent deviant stimulus (oddball). Because neural mechanisms underlying MMN and MMA remain unclear, there is a controversy as to whether MMN and MMA arise solely from stimulus-specific adaptation (SSA), in which the response to a stimulus cumulatively attenuates with its repetitive presentation. To address this issue, we used electrocorticography and the auditory roving-oddball paradigm in two awake macaque monkeys. We examined the effect of stimulus repetition number on MMA and on responses to repeated stimuli and oddballs across the cerebral cortex in the time-frequency domain. As the repetition number increased, MMA spread across the temporal, frontal and parietal cortices, and each electrode yielded a larger MMA. Surprisingly, this increment in MMA largely depended on response augmentation to the oddball rather than on SSA to the repeated stimulus. Following sufficient repetition, the oddball evoked a spectral power increment in some electrodes on the frontal cortex that had shown no power increase to the stimuli with less or no preceding repetition. We thereby revealed that repetitive presentation of one stimulus not only leads to SSA but also facilitates the cortical response to oddballs involving a wide range of cortical regions. This facilitative effect might underlie the generation of MMN-like scalp potentials in macaques that potentially shares similar neural mechanisms with MMN in humans.


Asunto(s)
Corteza Auditiva/fisiología , Potenciales Evocados Auditivos/fisiología , Potenciales Evocados/fisiología , Vigilia/fisiología , Estimulación Acústica/métodos , Animales , Electroencefalografía/métodos , Macaca , Masculino , Tiempo de Reacción/fisiología
11.
Neuroimage ; 124(Pt A): 557-572, 2016 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-26363347

RESUMEN

Electrocorticography (ECoG) constitutes a powerful and promising neural recording modality in humans and animals. ECoG signals are often decomposed into several frequency bands, among which the so-called high-gamma band (80-250Hz) has been proposed to reflect local cortical functions near the cortical surface below the ECoG electrodes. It is typically assumed that the lower the frequency bands, the lower the spatial resolution of the signals; thus, there is not much to gain by analyzing the event-related changes of the ECoG signals in the lower-frequency bands. However, differences across frequency bands have not been systematically investigated. To address this issue, we recorded ECoG activity from two awake monkeys performing a retinotopic mapping task. We characterized the spatiotemporal profiles of the visual responses in the time-frequency domain. We defined the preferred spatial position, receptive field (RF), and response latencies of band-limited power (BLP) (i.e., alpha [3.9-11.7Hz], beta [15.6-23.4Hz], low [30-80Hz] and high [80-250Hz] gamma) for each electrode and compared them across bands and time-domain visual evoked potentials (VEPs). At the population level, we found that the spatial preferences were comparable across bands and VEPs. The high-gamma power showed a smaller RF than the other bands and VEPs. The response latencies for the alpha band were always longer than the latencies for the other bands and fastest in VEPs. Comparing the response profiles in both space and time for each cortical region (V1, V4+, and TEO/TE) revealed regional idiosyncrasies. Although the latencies of visual responses in the beta, low-, and high-gamma bands were almost identical in V1 and V4+, beta and low-gamma BLP occurred about 17ms earlier than high-gamma power in TEO/TE. Furthermore, TEO/TE exhibited a unique pattern in the spatial response profile: the alpha and high-gamma responses tended to prefer the foveal regions, whereas the beta and low-gamma responses preferred the peripheral visual fields with larger RFs. This suggests that neurons in TEO/TE first receive less selective spatial information via beta and low-gamma BLP but later receive more fine-tuned spatial foveal information via high-gamma power. This result is consistent with a hypothesis previously proposed by Nakamura et al. (1993) that states that visual processing in TEO/TE starts with coarse-grained information, which primes subsequent fine-grained information. Collectively, our results demonstrate that ECoG can be a potent tool for investigating the nature of the neural computations in each cortical region that cannot be fully understood by measuring only the spiking activity, through the incorporation of the knowledge of the spatiotemporal characteristics across all frequency bands.


Asunto(s)
Ondas Encefálicas , Electrocorticografía/métodos , Lóbulo Occipital/fisiología , Campos Visuales/fisiología , Percepción Visual/fisiología , Animales , Potenciales Evocados Visuales , Macaca , Masculino , Estimulación Luminosa , Procesamiento de Señales Asistido por Computador
12.
PLoS Comput Biol ; 11(11): e1004537, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26584045

RESUMEN

Brain-wide interactions generating complex neural dynamics are considered crucial for emergent cognitive functions. However, the irreducible nature of nonlinear and high-dimensional dynamical interactions challenges conventional reductionist approaches. We introduce a model-free method, based on embedding theorems in nonlinear state-space reconstruction, that permits a simultaneous characterization of complexity in local dynamics, directed interactions between brain areas, and how the complexity is produced by the interactions. We demonstrate this method in large-scale electrophysiological recordings from awake and anesthetized monkeys. The cross-embedding method captures structured interaction underlying cortex-wide dynamics that may be missed by conventional correlation-based analysis, demonstrating a critical role of time-series analysis in characterizing brain state. The method reveals a consciousness-related hierarchy of cortical areas, where dynamical complexity increases along with cross-area information flow. These findings demonstrate the advantages of the cross-embedding method in deciphering large-scale and heterogeneous neuronal systems, suggesting a crucial contribution by sensory-frontoparietal interactions to the emergence of complex brain dynamics during consciousness.


Asunto(s)
Encéfalo/fisiología , Estado de Conciencia/fisiología , Vigilia/fisiología , Algoritmos , Animales , Biología Computacional , Electroencefalografía , Macaca
13.
Sci Rep ; 5: 15006, 2015 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-26456147

RESUMEN

Mismatch negativity (MMN) is a component of event-related potentials (ERPs) evoked by violations of regularity in sensory stimulus-series in humans. Recently, the MMN has received attention as a clinical and translatable biomarker of psychiatric disorders such as schizophrenia, and for the development animal models of these psychiatric disorders. In this study, we investigated the generation of MMN in common marmosets, which are an important non-human primate model with genetic manipulability. We recorded the electrocorticograms (ECoGs) from two common marmosets with epidurally implanted electrodes covering a wide range of cortical regions. ECoG recordings were conducted in a passive listening condition with a roving oddball paradigm. We compared the ERPs evoked by repeatedly presented standard stimuli and those evoked by the deviant stimuli. Significant differences in the ERPs were observed in several cortical areas. In particular, deviant stimuli elicited larger negative activity than standard stimuli in the temporal area. In addition, the latency and polarity of the activity were comparable to human MMNs. This is thus the first report of MMN-like activity in common marmosets. Our findings have the potential to advance future gene-manipulation studies that aim to establish non-human primate models of schizophrenia.


Asunto(s)
Percepción Auditiva/fisiología , Corteza Cerebral/fisiología , Electrocorticografía/métodos , Potenciales Evocados Auditivos/fisiología , Estimulación Acústica , Animales , Callithrix/fisiología , Corteza Cerebral/anatomía & histología , Corteza Cerebral/diagnóstico por imagen , Electrocorticografía/instrumentación , Electrodos Implantados , Masculino , Radiografía , Tiempo de Reacción , Técnicas Estereotáxicas , Tomografía Computarizada de Emisión
14.
Elife ; 42015 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-26416139

RESUMEN

Context is information linked to a situation that can guide behavior. In the brain, context is encoded by sensory processing and can later be retrieved from memory. How context is communicated within the cortical network in sensory and mnemonic forms is unknown due to the lack of methods for high-resolution, brain-wide neuronal recording and analysis. Here, we report the comprehensive architecture of a cortical network for context processing. Using hemisphere-wide, high-density electrocorticography, we measured large-scale neuronal activity from monkeys observing videos of agents interacting in situations with different contexts. We extracted five context-related network structures including a bottom-up network during encoding and, seconds later, cue-dependent retrieval of the same network with the opposite top-down connectivity. These findings show that context is represented in the cortical network as distributed communication structures with dynamic information flows. This study provides a general methodology for recording and analyzing cortical network neuronal communication during cognition.


Asunto(s)
Corteza Cerebral/fisiología , Cognición , Red Nerviosa/fisiología , Animales , Mapeo Encefálico , Electrocorticografía , Haplorrinos , Memoria , Percepción , Estimulación Luminosa
15.
J Neurosci ; 35(30): 10866-77, 2015 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-26224868

RESUMEN

What aspects of neuronal activity distinguish the conscious from the unconscious brain? This has been a subject of intense interest and debate since the early days of neurophysiology. However, as any practicing anesthesiologist can attest, it is currently not possible to reliably distinguish a conscious state from an unconscious one on the basis of brain activity. Here we approach this problem from the perspective of dynamical systems theory. We argue that the brain, as a dynamical system, is self-regulated at the boundary between stable and unstable regimes, allowing it in particular to maintain high susceptibility to stimuli. To test this hypothesis, we performed stability analysis of high-density electrocorticography recordings covering an entire cerebral hemisphere in monkeys during reversible loss of consciousness. We show that, during loss of consciousness, the number of eigenmodes at the edge of instability decreases smoothly, independently of the type of anesthetic and specific features of brain activity. The eigenmodes drift back toward the unstable line during recovery of consciousness. Furthermore, we show that stability is an emergent phenomenon dependent on the correlations among activity in different cortical regions rather than signals taken in isolation. These findings support the conclusion that dynamics at the edge of instability are essential for maintaining consciousness and provide a novel and principled measure that distinguishes between the conscious and the unconscious brain. SIGNIFICANCE STATEMENT: What distinguishes brain activity during consciousness from that observed during unconsciousness? Answering this question has proven difficult because neither consciousness nor lack thereof have universal signatures in terms of most specific features of brain activity. For instance, different anesthetics induce different patterns of brain activity. We demonstrate that loss of consciousness is universally and reliably associated with stabilization of cortical dynamics regardless of the specific activity characteristics. To give an analogy, our analysis suggests that loss of consciousness is akin to depressing the damper pedal on the piano, which makes the sounds dissipate quicker regardless of the specific melody being played. This approach may prove useful in detecting consciousness on the basis of brain activity under anesthesia and other settings.


Asunto(s)
Corteza Cerebral/fisiología , Estado de Conciencia/fisiología , Inconsciencia , Anestésicos/farmacología , Animales , Corteza Cerebral/efectos de los fármacos , Estado de Conciencia/efectos de los fármacos , Electroencefalografía , Haplorrinos , Masculino , Procesamiento de Señales Asistido por Computador
16.
Curr Opin Neurobiol ; 32: 124-31, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25889531

RESUMEN

Our brain is organized in a modular structure. Information in different modalities is processed within distinct cortical areas. However, individual cortical areas cannot enable complex cognitive functions without interacting with other cortical areas. Electrocorticography (ECoG) has recently become an important tool for studying global network activity across cortical areas in animal models. With stable recordings of electrical field potentials from multiple cortical areas, ECoG provides an opportunity to systematically study large-scale cortical activity at a mesoscopic spatiotemporal resolution under various experimental conditions. Recent developments in thin, flexible ECoG electrodes permit recording field potentials from not only gyral but intrasulcal cortical surfaces. Our review here focuses on the recent advances of ECoG applications to non-human primates.


Asunto(s)
Corteza Cerebral/fisiología , Electrocorticografía/métodos , Red Nerviosa/fisiología , Animales , Primates
17.
Neuroimage ; 116: 222-31, 2015 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-25865143

RESUMEN

Many aspects of brain function are influenced by modulatory processes, including arousal. The most abrupt changes in arousal occur at the wake-sleep transition and at the induction of anesthetic conditions. They are accompanied by major electrophysiological changes, including an emergence of low-frequency (sleep-like) activity and a loss of mid-frequency (wake-like) activity that has been linked to feedback processes of the brain. Nevertheless, the causal relationship between these two types of electrophysiological changes, as well as the cortical mechanisms underlying changes in arousal and consciousness, remain poorly understood. To address this, we studied spontaneous electro-cortical activity during arousal changes in macaques. During sleep and at loss of consciousness induced by propofol anesthesia, we identified a prototypical sequence of cortical events in which the loss of mid-frequency activity preceded, by seconds, the increases in low-frequency activity. Furthermore, in visual areas, an influence of mid-frequency change onto high-frequency activity was observed across visual hierarchy. These results are consistent with the notion that drops in arousal and consciousness are facilitated by a release of feedback cortical inhibition.


Asunto(s)
Anestésicos Intravenosos/farmacología , Corteza Cerebral/fisiología , Propofol/farmacología , Sueño/fisiología , Vigilia/fisiología , Animales , Nivel de Alerta/fisiología , Ondas Encefálicas , Corteza Cerebral/efectos de los fármacos , Electrocorticografía , Macaca mulatta
18.
Neurosci Res ; 90: 65-71, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25433093

RESUMEN

The human brain is characterized by an evolutionarily new, highly developed neocortex, which has characteristic connections with phylogenically older structures to enable adaptation to complex social environments. Adaptive social behavior requires successful mental representations of the self and others' emotions and intentions. Measurement of brain activity under laboratory-based settings has been the gold standard in previous cognitive neuroscience studies. However, these measurement settings may be sub-optimal if we want to visualize brain function in active individuals in real-world environments. Neuroscience has historically developed through generations of the "sensing brain," "emotional brain," "social brain," and "ego brain." The next generation is the "action brain" combined with "real-world neuroscience" perspective. To enable in situ measurement of the action brain, real-world or two-person neuroimaging techniques are necessary to visualize brain dynamics during natural social situations, such as the presence of others. This review discusses recent literature describing non-human primate (NHP) and human brain functions during active behaviors in social environments. Uncovering the neurobiological mechanisms of the active brain in the presence of others by using real-world neuroimaging will be an important step toward fully understanding the human brain and its mental functions.


Asunto(s)
Encéfalo/fisiología , Cognición/fisiología , Emociones/fisiología , Neuroimagen , Conducta Social , Medio Social , Animales , Humanos
19.
Cereb Cortex ; 25(9): 2929-38, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24812083

RESUMEN

Although the emerging field of functional connectomics relies increasingly on the analysis of spontaneous fMRI signal covariation to infer the spatial fingerprint of the brain's large-scale functional networks, the nature of the underlying neuro-electrical activity remains incompletely understood. In part, this lack in understanding owes to the invasiveness of electrophysiological acquisition, the difficulty in their simultaneous recording over large cortical areas, and the absence of fully established methods for unbiased extraction of network information from these data. Here, we demonstrate a novel, data-driven approach to analyze spontaneous signal variations in electrocorticographic (ECoG) recordings from nearly entire hemispheres of macaque monkeys. Based on both broadband analysis and analysis of specific frequency bands, the ECoG signals were found to co-vary in patterns that resembled the fMRI networks reported in previous studies. The extracted patterns were robust against changes in consciousness associated with sleep and anesthesia, despite profound changes in intrinsic characteristics of the raw signals, including their spectral signatures. These results suggest that the spatial organization of large-scale brain networks results from neural activity with a broadband spectral feature and is a core aspect of the brain's physiology that does not depend on the state of consciousness.


Asunto(s)
Analgésicos/farmacología , Mapeo Encefálico , Encéfalo/efectos de los fármacos , Sueño/fisiología , Vigilia/fisiología , Animales , Encéfalo/irrigación sanguínea , Encéfalo/fisiología , Electroencefalografía , Electromiografía , Análisis de Fourier , Procesamiento de Imagen Asistido por Computador , Ketamina/farmacología , Macaca mulatta , Imagen por Resonancia Magnética , Medetomidina/farmacología , Oxígeno/sangre
20.
J Neurosci Methods ; 233: 155-65, 2014 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-24972186

RESUMEN

BACKGROUND: Electrocorticography (ECoG) permits recording electrical field potentials with high spatiotemporal resolution over a large part of the cerebral cortex. Application of chronically implanted ECoG arrays in animal models provides an opportunity to investigate global spatiotemporal neural patterns and functional connectivity systematically under various experimental conditions. Although ECoG is conventionally used to cover the gyral cortical surface, recent studies have shown the feasibility of intrasulcal ECoG recordings in macaque monkeys. NEW METHOD: Here we developed a new ECoG array to record neural activity simultaneously from much of the medial and lateral cortical surface of a single hemisphere, together with the supratemporal plane (STP) of the lateral sulcus in macaque monkeys. The ECoG array consisted of 256 electrodes for bipolar recording at 128 sites. RESULTS: We successfully implanted the ECoG array in the left hemisphere of three rhesus monkeys. The electrodes in the auditory and visual cortex detected robust event related potentials to auditory and visual stimuli, respectively. Bipolar recording from adjacent electrode pairs effectively eliminated chewing artifacts evident in monopolar recording, demonstrating the advantage of using the ECoG array under conditions that generate significant movement artifacts. COMPARISON WITH EXISTING METHODS: Compared with bipolar ECoG arrays previously developed for macaque monkeys, this array significantly expands the number of cortical target areas in gyral and intralsulcal cortex. CONCLUSIONS: This new ECoG array provides an opportunity to investigate global network interactions among gyral and intrasulcal cortical areas.


Asunto(s)
Corteza Cerebral/fisiología , Electrodos Implantados , Electroencefalografía/instrumentación , Animales , Artefactos , Impedancia Eléctrica , Electroencefalografía/métodos , Potenciales Evocados Auditivos , Potenciales Evocados Visuales , Macaca mulatta , Imagen por Resonancia Magnética , Masculino , Masticación/fisiología , Procedimientos Neuroquirúrgicos , Tomografía Computarizada por Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA