RESUMEN
Genetic variation in phenological traits is the key in expanding production areas of crops. Southern highbush blueberry (SHB) is a blueberry cultivar group adapted to warmer climates and has been developed by multiple interspecific hybridizations between elite northern highbush blueberry (NHB) (Vaccinium corymbosum L.) and low-chill Vaccinium species native to the southern United States. In this study, we employed a collection of diverse SHB accessions and performed a genome-wide association study (GWAS) for five phenology-related traits [chilling requirement (CR), flowering date, ripening date, fruit development period, and continuous flowering] using polyploid GWAS models. Phenology-related traits showed higher heritability and larger correlation coefficients between year replications, which resulted in the detection of robust phenotype-genotype association peaks. Notably, a single association peak for the CR was detected on Chromosome 4. Comparison of genotypes at the GWAS peaks between NHB and SHB revealed the putative introgression of low-chill and late-flowering alleles into the highbush genetic pool. Our results provide basic insights into the diversity of phenological traits in blueberry and the genetic establishment of current highbush cultivar groups.
RESUMEN
Interspecific hybridization is a common breeding approach for introducing novel traits and genetic diversity to breeding populations. Southern highbush blueberry (SHB) is a blueberry cultivar group that has been intensively bred over the last 60 years. Specifically, it was developed by multiple interspecific crosses between northern highbush blueberry [NHB, Vaccinium corymbosum L. (2n = 4x = 48)] and low-chill Vaccinium species to expand the geographic limits of highbush blueberry production. In this study, we genotyped polyploid blueberries, including 105 SHB, 17 NHB, and 10 rabbiteye blueberry (RE) (Vaccinium virgatum Aiton), from the accessions planted at Poplarville, Mississippi, and accessions distributed in Japan, based on the double-digest restriction site-associated DNA sequencing. The genome-wide SNP data clearly indicated that RE cultivars were genetically distinct from SHB and NHB cultivars, whereas NHB and SHB were genetically indistinguishable. The population structure results appeared to reflect the differences in the allele selection strategies that breeders used for developing germplasm adapted to local climates. The genotype data implied that there are no or very few genomic segments that were commonly introgressed from low-chill Vaccinium species to the SHB genome. Principal component analysis-based outlier detection analysis found a few loci associated with a variable that could partially differentiate NHB and SHB. These SNP loci were detected in Mb-scale haplotype blocks and may be close to the functional genes related to SHB development. Collectively, the data generated in this study suggest a polygenic adaptation of SHB to the southern climate, and may be relevant for future population-scale genome-wide analyses of blueberry.