Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; 62(39): e202308438, 2023 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-37534579

RESUMEN

Porous sorbents are materials that are used for various applications, including storage and separation. Typically, the uptake of a single gas by a sorbent decreases with temperature, but the relative affinity for two similar gases does not change. However, in this study, we report a rare example of "crossover sorption," in which the uptake capacity and apparent affinity for two similar gases reverse at different temperatures. We synthesized two soft porous coordination polymers (PCPs), [Zn2 (L1)(L2)2 ]n (PCP-1) and [Zn2 (L1)(L3)2 ]n (PCP-2) (L1= 1,4-bis(4-pyridyl)benzene, L2=5-methyl-1,3-di(4-carboxyphenyl)benzene, and L3=5-methoxy-1,3-di(4-carboxyphenyl)benzene). These PCPs exhibits structural changes upon gas sorption and show the crossover sorption for both C2 H2 /CO2 and C2 H6 /C2 H4 , in which the apparent affinity reverse with temperature. We used in situ gas-loading single-crystal X-ray diffraction (SCXRD) analysis to reveal the guest inclusion structures of PCP-1 for C2 H2 , CO2 , C2 H6 , and C2 H4 gases at various temperatures. Interestingly, we observed three-step single-crystal to single-crystal (sc-sc) transformations with the different loading phases under these gases, providing insight into guest binding positions, nature of host-guest or guest-guest interactions, and their phase transformations upon exposure to these gases. Combining with theoretical investigation, we have fully elucidated the crossover sorption in the flexible coordination networks, which involves a reversal of apparent affinity and uptake of similar gases at different temperatures. We discovered that this behaviour can be explained by the delicate balance between guest binding and host-guest and guest-guest interactions.

2.
Commun Chem ; 6(1): 62, 2023 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-37016050

RESUMEN

Incorporating strong electron donor functionality into flexible coordination networks is intriguing for sorption applications due to a built-in mechanism for electron-withdrawing guests. Here we report a 2D flexible porous coordination network, [Ni2(4,4'-bipyridine)(VTTF)2]n(1) (where H2VTTF = 2,2'-[1,2-bis(4-benzoic acid)-1,2ethanediylidene]bis-1,3-benzodithiole), which exhibits large structural deformation from the as-synthesized or open phase (1α) into the closed phase (1ß) after guest removal, as demonstrated by X-ray and electron diffraction. Interestingly, upon exposure to electron-withdrawing species, 1ß reversibly undergoes guest accommodation transitions; 1α⊃O2 (90 K) and 1α⊃N2O (185 K). Moreover, the 1ß phase showed exclusive O2 sorption over other gases (N2, Ar, and CO) at 120 K. The phase transformations between the 1α and 1ß phases under these gases were carefully investigated by in-situ X-ray diffraction, in-situ spectroscopic studies, and DFT calculations, validating that the unusual sorption was attributed to the combination of flexible frameworks and VTTF (electron-donor) that induces strong interactions with electron-withdrawing species.

3.
J Org Chem ; 82(15): 7745-7749, 2017 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-28686025

RESUMEN

A laterally π-extended dithia[6]helicene 1, representing an interesting saddle-helix hybrid molecule containing an unusual heptagon, has been synthesized by MoCl5-mediated oxidative stitching of tetrakis(thienylphenyl)naphthalene precursor 2 involving reactive-site capping by chlorination and subsequent Pd-mediated dechlorination of tetrachlorinated intermediate 1-Cl4. Highly distorted, wide helical structures of dithia[6]helicenes (1 and 1-Cl4) were clarified by single-crystal X-ray diffraction analyses where heterochiral slipped π-π stacking was displayed in a one-dimensional fashion. Notably, theoretical studies on the thermodynamic behavior of 1 predicted an extraordinarily high isomerization barrier of 49.7 kcal·mol-1, which enabled optical resolution and chiroptical measurements. Electronic structures of these huge helicenes were also examined by photophysical and electrochemical measurements.

4.
Org Biomol Chem ; 15(21): 4697-4703, 2017 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-28516991

RESUMEN

The synthesis and properties of a new π-extended double [6]helicene 2 and a dithia[6]helicene 3 are described. Compared to the previously reported parent double-helicene molecule 1, the introduction of n-butyl groups successfully improved the solubility, which allowed an experimental investigation into the electronic structure of 2 and 3 by photophysical measurements and cyclic voltammetry. The characteristic two-blade propeller structures of 2 and 3 were unambiguously determined by single-crystal X-ray diffraction analysis. The crystal packing structure of 2 exhibited a contorted two-dimensional stacking, whereby molecules of n-pentane were incorporated in the stacks. Despite the presence of n-butyl groups, 3 formed a unique three-dimensional stacking lattice in the crystal. Time-resolved microwave conductivity measurements revealed that the double helicenes (1-3) exhibited transient conductivities. An organic field-effect transistor fabricated using 3 was found to function as a p-type transistor.

5.
J Am Chem Soc ; 138(32): 10351-5, 2016 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-27501373

RESUMEN

A simple yet effective method for the formation of thiophene-fused π-systems is reported. When arylethynyl-substituted polycyclic arenes were heated in DMF in the presence of elemental sulfur, the corresponding thiophene-fused polycyclic arenes were obtained via cleavage of the ortho-C-H bond. Thus, arylethynylated naphthalenes, fluoranthenes, pyrenes, corannulenes, chrysenes, and benzo[c]naphtho[2,1-p]chrysenes were effectively converted into the corresponding thiophene-fused π-systems. Apart from polycyclic hydrocarbons, thiophene derivatives are also susceptible to this reaction. The practical utility of this reaction is demonstrated by preparations on the decagram scale, one-pot two-step reaction sequences, and multiple thiophene annulations.

6.
Org Lett ; 18(16): 3992-5, 2016 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-27490184

RESUMEN

Two distinct structural elements that render π-systems nonplanar, i.e., geodesic curvature and helical motifs, have been combined into new polyarenes that contain both features. The resultant corannulene-[n]helicenes (n = 5, 6) show unique molecular dynamics in their enantiomerization processes, including inversion motions of both the bowl and the helix. Optical resolution of a corannulene-based skeletally chiral molecule was also achieved for the first time, and the influence of the bowl-motif annulation on the chiroptical properties was investigated.

7.
J Am Chem Soc ; 138(10): 3587-95, 2016 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-26918641

RESUMEN

Quadruple helicenes, bearing dithia[6]helicene and [5]helicene substructures, were prepared by a well-controlled Scholl reaction. The 4-fold helicity provides 9 stereoisomers including 4 pairs of enantiomers and 1 meso isomer. Among them, differently distorted structures of a propeller-shaped isomer (QH-A) and a saddle-shaped isomer (QH-B) were unambiguously determined by X-ray crystallography. Especially in the latter isomer, a proper accumulation of repulsions on the helical substructures twisted the naphthalene core to the limit (69.5°), the highest degree of twisting deformation per benzene unit (35.3° at the most). Photophysical and electrochemical studies showed a broadened HOMO-LUMO gap and a HOMO of QH-B lying lower compared to those of QH-A. These results together with the density functional theory (DFT) calculations have clearly demonstrated the electronic state dependency on the molecular geometry. Additionally, kinetic studies of the isomerization between these isomers using (1)H NMR, circular dichroism, and DFT calculations shed light on the interconversion pathways among the stereoisomers. The height of barriers in the inversion of a certain helical substructure may be affected by the neighboring helical substructures.

8.
J Am Chem Soc ; 137(24): 7763-8, 2015 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-26028308

RESUMEN

The synthesis, structures, and properties of a π-extended double helicene 1 are described. This double helicene 1 was synthesized by a four-fold oxidative C-H biphenylation of naphthalene followed by the Scholl reaction or via five steps including the Suzuki-Miyaura cross-coupling reaction and the Scholl reaction. Due to the two helical substructures, 1 has three isomers, i.e., two enantiomers in a twisted form [(P,P) and (M,M)] and one diastereoisomer in a meso form. X-ray crystallographic analysis of the twisted isomers (twisted-1) revealed a tightly offset packing pattern of (P,P)- and (M,M)-twisted isomers, affording a three-dimensional lamellar stacking structure. A high isomerization barrier (43.5 kcal mol(-1)) and the relative thermal stability of twisted-1 isomer over meso-1 by 0.9 kcal mol(-1) were estimated by DFT calculations. The three isomers were successfully separated by chiral HPLC and characterized by circular dichroism spectroscopy as well as by TD-DFT studies. Electronic state variation resulting from the molecular geometry difference between the two diastereoisomers (twisted-1 and meso-1) was observed by UV-vis absorption and fluorescence spectra.


Asunto(s)
Compuestos Policíclicos/química , Compuestos de Bifenilo/química , Cristalografía por Rayos X , Isomerismo , Modelos Moleculares , Naftalenos/química , Oxidación-Reducción , Compuestos Policíclicos/síntesis química , Teoría Cuántica , Termodinámica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...